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IntrodutionA bubble is an intrinsially worthless asset whih trades at a positive prie suh as �atmoney, governmental debt, or a bond that never pays any dividends. The theoretialinsight that the emergene of bubbles is ompatible with fully optimal and rationalbehavior of investors has triggered a broad literature aiming to identify the onditionsunder whih bubbles emerge and haraterize their properties and impliations. Despitethis interest, however, the vast majority of these studies adopts a deterministi frame-work. The ontribution of the present paper is to study asset bubbles in a stohastisetting with random prodution shoks whih to the best of our knowledge has not beendone in the literature.A natural framework to study asset bubbles also to be adopted in this paper is theDiamond overlapping generations model with prodution and endogenous apital au-mulation. For this lass of eonomies, Tirole (1985) showed that bubbles emerge quitenaturally in the presene of dynami ineÆienies due to an overaumulation of apital.Moreover, a unique reursive equilibrium where the bubble is a time-independent, non-trivial funtion on the natural state spae exists in his model. In the present paper, thistype of equilibrium will be referred to as a Bubbly Markov Equilibrium (BME). In Ti-role's deterministi model, a BME orresponds to the saddle-path of his two-dimensionaldynamial system.Tirole's model has been extended in various diretions, e.g., to inlude monetary bubblesas in Weil (1987) or, more reently, in Mihel & Wigniolle (2003) and Gali (2013), andto embody �nanial fritions as in Kunieda (2008), and many others. Common toall these studies is that the prodution proess remains deterministi. Starting withthe early ontributions of Wang (1993, 1994), however, many studies of overlappinggenerations eonomies with prodution adopt a stohasti setup where prodution issubjeted to exogenous random shoks. A natural question then is how the results onthe existene and properties of asset bubbles for deterministi OLG eonomies arryover to a stohasti setting. Surprisingly, this questions is to the best of our knowledgestill unresolved and is therefore the theme of the present paper. Coneptually, we fouson reursive equilibria (RE) where all equilibrium variables are time-invariant funtionsof apital and the prodution shok. In K�ubler & Polemarhakis (2004), suh equilibriaare referred to as Markov Equilibria (ME). In the present paper, we extend this notionby referring to ME whih admit a bubble as Bubbly Markov Equilibria (BME).Reent studies of (bubbleless) ME in stohasti overlapping generations models withprodution may be found in Wang (1993, 1994), Morand & Re�ett (2007), MGovern,Morand & Re�ett (2012), or Hillebrand (2012b). In these papers, powerful results fromfuntional analysis developed and applied, e.g., in Coleman (1991, 2000) , or Greenwood& Hu�man (1995) are used to ompute ME as �xed points of an operator derived fromthe onsumers' Euler equations. Fortunately, it turns out that the omputation of BME1



is aessible to these tehniques as well. Using this approah, a �rst objetive of thispaper is to establish a general existene result of BME. The employed eonomy is similarto Wang (1993) in that prodution shoks are i.i.d. and preferenes are additive overlifetime onsumption. Our existene result requires a set of additional restritions whihredue to the ones in Tirole (1985) for the speial ase with degenerate shoks. Basedon these �ndings, a seond objetive is to haraterize the long-run dynamis along theBME and obtain onditions under whih a Stationary BME (SBME) orresponding toan invariant probability distribution on the endogenous state spae exists. Our seondmain result establishes onditions under whih a SBME exists.The paper is organized as follows. Setion 1 introdues the model. The existene andonstrution of BME are the theme of Setion 2. Setion 3 studies the dynamis alongthe BME and the existene of stable sets. Setion 4 onludes, proofs for all results arerelegated to the Mathematial Appendix.1 The Model1.1 Prodution setorA single �rm operates a linear homogeneous tehnology to produe an all-purpose outputommodity using apital and labor as inputs. In addition, prodution in period t issubjeted to an exogenous random prodution shok "t 2 E � R++ . Per-apita outputyt in period t is produed from apital intensity kt � 0 and the shok aording to theintensive form tehnology f : R+ �E �! R+ , yt = f(kt; "t) := "tg(kt). Throughout, thefollowing restritions on tehnology are imposed.Assumption 1The map g : R+ �! R+ is C2 with derivatives g00 < 0 < g0 and limk!0 g0(k) =1.Denote by E�(z) := j z�0(z)�(z) j the elastiity of a di�erentiable funtion � 6= 0. Below wewill oasionally impose the following additional restritions:(T1)Eg0(k) � 1 8k > 0 (T2)Eg(k) + jEg0(k)j � 1 8k > 0:Restrition (T1) is equivalent to k 7! kR(k; ") being non-dereasing and is often imposedin the literature, f. Wang (1993) and others. Condition (T2) is equivalent to k 7! Eg(k)being non-dereasing. The latter holds for a large lass of tehnologies inluding Cobb-Douglas (g(k) = k�) and CES prodution (g(k) = [1 � a + ak%℄ 1% , 0 < % < 1 in whihase Eg(k) = aa+(1�a)k�% ). Evidently, (T2) is stronger and implies (T1).As in Wang (1993), shoks are i.i.d. over time with (marginal) distribution � supportedon E where f"min; "maxg � E � ["min; "max℄ � R++ . The proess f"tgt�0 indues a2



�ltration fFtgt�0 suh that eah "t is Ft-measurable. Throughout, the notion of anadapted proess f�tgt�0 refers to this �ltration and implies that eah �t an depend onlyon random variables "n, n � t. E t [�℄ := E [�jFt ℄ is the onditional expetations operator.At equilibrium, labor supply will be onstant and normalized to unity. Market learingand pro�t maximizing behavior imply that the equilibrium wage wt and apital returnrt are determined as wt = W(kt; "t) := "t[g(k)� kg0(k)℄ (1a)rt = R(kt; "t) := "t g0(k): (1b)1.2 The BubbleThe bubbly asset an be purhased in period t at a prie of unity and o�ers a randomreturn r?t+1 > 0 during the next period. Let bt � 0 denote the (value of the) bubble attime t � 0. As a spei� interpretation, one may think of a one-period lived bond inwhih ase bt is the number of bonds issued at time t. Other interpretations suh asreal government debt or real money balanes apply as well. The return proess fr?t gt�0determines the risk to whih bubbly investments are subjeted. The bubble is ompletelyself-�naning in the sense that the payment obligation inurred during period t is fully�naned by issuing new bubbly assets at time t+1. Thus, given a return proess fr?t gt�0and an initial value b0 � 0, the bubble evolves aording to the law of motionbt+1 = r?t+1bt; t � 0: (2)1.3 Consumption SetorThe onsumption setor onsists of overlapping generations of two-period lived on-sumers. Young onsumers earn inome from supplying one unit of labor inelastially tothe labor market while old onsumers earn apital inome. For simpliity, there is nopopulation growth. A young onsumer who takes deisions in period t observes her laborinome wt > 0 and faes returns rt+1 on apital and r?t+1 on the bubbly asset whih enterthe deision problem as given random variables. The onsumer hooses her investmentb in bubbles and apital investment s to maximize expeted lifetime utility. Assumingan additive von-Neumann Morgenstern utility funtion U(y; o) = u(y) + v(o) overlifetime onsumption, the deision problem reads:maxb;s nu(wt � b� s) + E t�v�r?t+1 b+ rt+1 s���� s � 0; b+ s � wto: (3)Note that no short-selling onstraints on bubbles are imposed at the individual level.Throughout, we impose the following restritions on the utility funtions:3



Assumption 2Both u and v are C2 with derivatives z00 < 0 < z0 and lim!0 z0() =1, z 2 fu; vg.The following additional restritions will oasionally be used in the sequel:(U1) Ev0() � 1 8 > 0 (U2) Ev0() � � 8 > 0 (U3) v() � u();  > 0:Observe that restrition (U2) of onstant relative risk-aversion implies the formv() = ( 1�� �1�� � 1� if � > 0; � 6= 1 log  if � = 1 ;  > 0:The savings deision st derived from (3) determines the per-apita apital stok kt+1 ofthe following period. Exploiting this and (2), one obtains the following Euler equationsassoiated with the onsumer's deision problem (3) whih must hold at equilibrium:u0(wt � bt � kt+1) = E t�R(kt+1; �)v0�bt+1 + kt+1R(kt+1; �)�� (4a)u0(wt � bt � kt+1)bt = E t�bt+1v0�bt+1 + kt+1R(kt+1; �)��: (4b)1.4 EquilibriumThe eonomy is E = hu; v; f; �i. The most general notion of equilibrium is that of asequential (or sequene of markets) equilibrium (SE) to be introdued in the followingDe�nition 1Given initial values k0 > 0, "0 2 E , and b0 � 0, a SE for E is an adapted stohastiproess �wt; rt; r?t ; bt; kt+1	t�0 whih satis�es (1a,b), (2), and (4a,b) for all t � 0.In this paper, we fous on a partiular lass of equilibria where all equilibrium variablesat time t are determined by time-invariant funtions of some state variable xt with valuesin the state spae X. In the literature, suh equilibria are alled Reursive Equilibria(RE). We on�ne ourselves to a lass of reursive equilibria where the state variable isxt = (kt; "t). The underlying state spae is alled the natural state spae. Note thatthe fator prie mappingsW and R from (1a,b) already satisfy this property. Followingthe terminology of K�ubler & Polemarhakis (2004), RE on the natural state spae arealled Markov equilibria (ME). Extending this terminology, we will refer to ME whihadmit a bubble as Bubbly Markov equilibria (BME). If the bubble is trivial, i.e., bt � 0,a BME redues to a ME in the usual sense as studied, e.g., in Wang (1993). Formally,we have the followingDe�nition 2 (Bubbly Markov Equilibrium (BME))A SE of E is alled a BME if there exists a Borel set X � R++ � E and measurablemappings KE : X �! R++ and BE : X �! R+ suh that kt+1 = KE(kt; "t) andbt = BE(kt; "t) for all t � 0. 4



A BME is alled non-trivial if BE > 0. At any non-trivial BME the bubble return isgiven by the map R? : X � E �! R++ ,r?t+1 = R?(kt; "t; "t+1) := BE(KE(kt; "t); "t+1)BE(kt; "t) ; t � 0: (5)If the BME is trivial, however, i.e., BE � 0, then the supporting return proess is learlynot uniquely de�ned, i.e., any proess fr?t+1gt�0 whih satis�esu0(wt � kt+1) = E � [r?t+1v0(kt+1R(kt+1; �))℄ = 0for all t � 0 supports the equilibrium. A partiular hoie would be to set r?t+1 = rt+1 =R(kt+1; "t+1) for all t � 0.2 Existene of Bubbly Markov Equilibria2.1 The trivial equilibriumUnder the additional restrition (T1), it is shown in Wang (1993) that E possesses aunique trivial ME. The latter is assoiated with the mappings BE0 � 0 and KE0 = K0 ÆWwhere K0 : R++ �! R++ determines the unique solution k = K0(w) to the impliitondition G0(k; w) := u0(w � k)� E � [R(k; �)v0(kR(k; �))℄ = 0: (6)Note that the impliit funtion theorem implies that K0 is C1, stritly inreasing, and0 < K0(w) < w for all w > 0. The apital proess along the trivial BME evolves askt+1 = KE0 (kt; "t) = K0 ÆW(kt; "t): (7)Note that KE0 is stritly inreasing and C1 in its �rst argument. Similar to Tirole (1985),the properties of the trivial equilibrium are key to obtain onditions under whih non-trivial BME exists. In antiipation of this result, the remainder imposes the followingAssumption 3The map KE0 (�; "max) from (7) has a unique non-trivial �xed point kmax whih is stable.Uniqueness and stability of kmax imply k � K0(k; "max) for all k 2 K :=℄0; kmax℄. Thus,kt 2 K implies kt+1 = K0(kt; "t) � K0(kt; "max) � kmax. Assuming k0 2 K permits thestate spae in De�nition 2 to be hosen as X := K � E along the trivial BME. Belowwe show that this hoie extends to the non-trivial ase. Thus, a �rst onsequene ofAssumption 3 is that it will allow us to obtain a bounded state spae. Below we will seethat a seond property of the �xed point kmax is suÆient for non-trivial BME to exist.5



2.2 Construting an operatorIn the sequel, we assume that Assumptions 1, 2, and 3 hold. We seek to obtain onditionsunder whih a non-trivial BME exists. For this purpose, we will use the Euler equations(4a,b) to onstrut an operator whose non-trivial �xed points give rise to non-trivialBME. Let kmax and K be de�ned as in Assumption 3 and the previous subsetion. Wealso de�ne wmax :=W(kmax; "max) and W :=℄0; wmax℄ =W(K � E).As the urrent state xt = (kt; "t) enters the Euler equations (4a,b) only through thewage wt = W(xt), we onjeture that, similar to the trivial equilibrium, the mappingsKE and BE from De�nition 2 an be written as KE = K ÆW and BE = B Æ W whereK : W �! K and B : W �! R+ . Based on this insight, our goal in this setion is todetermine a funtion B : W �! R++ suh that bt = B(wt) for all times t � 0 onsistentwith (4a,b). To establish existene of suh a solution, we will onstrut an operator ona suitable funtion spae whose �xed points satisfy this property.De�ne the funtion spae
G := 8<: : W �! R+ ������  is ontinuous ;  (w) � w for all w > 0w 7!  (w) is weakly inreasingw 7! w �  (w) is weakly inreasing 9=; : (8)The spae G is endowed with the partial order  1 �  2 ( 1 >  2) i�  1(w) �  2(w)( 1(w) >  2(w)) for all w 2 W . Our goal is to onstrut an operator T : G �! G whose�xed points de�ne BME. The key ingredients to this approah are the Euler equations(4a,b). The idea is as follows: Suppose that the bubble during the following period isdetermined by some funtion  of next period's wage. Then, for any given value w 2 W ,the urrent bubble b and apital investment k must solve the Euler equations (4a,b).Given  2 G , letH1(k; b;w;  ) := u0(w � b� k)� E � �R(k; �)v0� (W(k; �)) + kR(k; �)�� (9a)H2(k; b;w;  ) := u0(w � b� k)b� E � � (W(k; �))v0� (W(k; �)) + kR(k; �)�� (9b)whih are de�ned for all w 2 W , k 2 K , and b � 0 suh that k + b < w. Existene anduniqueness of this solution is ensured by the next result.Lemma 1In addition to Assumptions 1{3, let (U1) and (T1) be satis�ed and  2 G be arbitrary.Then, for eah w 2 W there exist unique values ~b � 0 and ~k 2 K satisfying ~k + ~b < wsuh that H1(~k;~b;w;  ) = H2(~k;~b;w;  ) = 0.Lemma 1 permits to de�ne funtions K : W �! R++ and B : W �! R+ whihdetermine the unique solution to H1(~k;~b;w;  ) = H2(~k;~b;w;  ) = 0 for eah w 2 W .This result permits to de�ne an operator T on G whih assoiates with any funtion 2 G the new funtion T ( ) := B . 6



Lemma 2In addition to Assumptions 1{3, let (U1), (U2), and (T1) hold. Then T : G �! G .Furthermore,  > 0 implies T ( ) > 0,  = 0 implies T ( ) = 0, and T (idW ) < idW . Inaddition, K is ontinuous and satis�es K � K0 for all  2 G .The last result permits the state spae to be hosen as X = K �E along a BME as well.2.3 Properties of the operatorWe seek to establish existene of a non-trivial �xed point  2 G of T , i.e.,  > 0 andT ( ) =  . As shown in Lemma 2, the trivial solution  = 0 is always a �xed point,so an abstrat existene result will not help. Instead, we will expliitly onstrut non-trivial �xed points as pointwise limits of funtion sequenes. This approah also opensup the possibility to ompute �xed points numerially. The method follows the one inGreenwood & Hu�man (1995), see also the papers by Morand & Re�ett (2003, 2007).Our �rst task will be to establish additional properties of T suh as monotoniity, et.In this regard, the main obstale is that the methods from di�erential alulus inludingthe impliit funtion theorem are not available for funtions in G . To remedy thisproblem, we will temporarily restrit ourselves (respetively T ) to the smaller set
G
0 := f 2 G j is C1g (10)of ontinuously di�erentiable funtions in G . We denote by T 0 the restrition of T tothe smaller set G 0. It will turn out that establishing the afore-mentioned properties forT 0 is suÆient to apply the onstrution priniple below. The following result showsthat T 0 preserves ontinuous di�erentiability.Lemma 3Under the hypotheses of Lemma 2, T 0 : G

0 �! G
0.The following result establishes the desired monotoniity of T 0 whih is key to onstrut�xed points below.Lemma 4In addition to Assumptions 1 { 3, let (U1) and (T1) hold. Then, T 0 is monotoniallyinreasing, i.e.,  1 �  0 implies T 0( 1) � T 0( 0) and  1 >  0 implies T 0( 1) > T 0( 0).Observe that G 0 still ontains the trivial solution  � 0. Thus, we will need onditionsunder whih the operator T 0 'lifts' or inreases funtions lose to zero. For this purpose,the following ondition is required whih essentially extends the one from Tirole (1985)to the present stohasti setting.Assumption 4The largest �xed point from Assumption 3 satis�es R(kmax; "max) < 1.7



The merits of Assumption 4 is that we an establish the existene of a lower bound inthe following result.Lemma 5In addition to Assumptions 1{3, let (U1){(U3) and (T2) hold. For Æ 2℄0; 1[, de�ne Æ(w) := Æw, w 2 W . If Assumption 4 holds, there exists a Æ 2℄0; 1[ suh that T 0 Æ >  Æ.2.4 Construting non-trivial �xed pointsBased on the previous result, we are now in a position to expliitly onstrut a non-trivial �xed point. In fat, our approah delivers two suh solutions whih oinide whenthe �xed point is unique.As a �rst step, de�ne a sequene of funtions ( n)n�0 by setting  0 :=  Æ and  n+1 :=T 0( n). By Lemma 3, this sequene is well-de�ned, i.e.,  n 2 G 0 for all n � 0. Further,by virtue of Lemma 5  1 >  0 whih implies  n+1 >  n for all n � 0 by Lemma 4. Forw 2 W , let B(w) := limn!1 n(w)whih is well-de�ned as the sequene ( n(w))n�1 is inreasing and bounded by w. Weshow that the limiting funtion satis�es B 2 G . For eah n � 1, w 7!  n(w) andw 7! w �  n(w), w 2 W are monotonially inreasing. Let 0 < w1 < w2 � wmax bearbitrary. Then, the inequalities  n(w1) �  n(w2) and w1 �  n(w1) � w2 �  n(w2)being true for all n � 1 also hold in the limit and imply that B inherits the previousmonotoniity properties. Using an argument developed and proved in Morand & Re�ett(2003, p.1369), these properties also imply ontinuity of B. Finally, B >  Æ > 0 and, asshown below, B(w) < w for all w 2 W . Thus, B 2 G .As a seond step, repeat the previous onstrution by setting e 0 := idW and e n+1 :=T 0( e n). Note that T 0( e 0) < e 0. Analogous reasonings give rise to the ontinuousfuntion B(w) := limn!1 n(w):Standard arguments imply the followingLemma 6Both funtions B and B onstruted above are �xed points of T and satisfy 0 <  Æ <B � B < idW .The previous results lead to the followingLemma 7Let B 2 G be a non-trivial �xed point of T and KB the assoiated apital funtion.Then, KE := KB ÆW and BE := B ÆW de�ne a non-trivial BME for E on X = K � E .8



Combining the onstrution devised in this setion with Lemmata 6 and 7, the mainresult of this setion an be stated in the followingTheorem 1Under Assumptions 1{4, and the additional restritions (U1){(U3) and (T2), the eon-omy E has at least one non-trivial BME.3 Dynamis and Stationary BME3.1 Dynamis along the BMELet B 2 G be a non-trivial �xed point of T omputed as in the previous setion andlet K := KB denote the indued apital funtion. In this setion, our goal is to studythe equilibrium dynamis along the indued BME. Spei�ally, we would like to knowwhether the bubble is persistent in the sense that limt!1 bt > 0 P{a.s. As B > 0, thebubble is non-persistent if and only if limt!1wt = 0 along the BME on a set of shoksequenes of positive measure. Our argument will show that the latter is exluded bythe equilibrium dynamial system.Given w0 :=W(k0; "0) > 0, set b0 = B(w0). The dynamis along the BME readkt+1 = KE(kt; "t) := K(W(kt; "t)) (11a)bt = BE(kt; "t) := B(W(kt; "t)): (11b)One observes that the equilibrium dynamis are essentially governed by the apitaldynamis (11a) while the equilibrium bubble in (11b) essentially mirrors the induedequilibrium wage proess. Note that (11a) is struturally of the same type as the bubble-less ase studied in Wang (1993).3.2 Self-supporting setsWe are interested in haraterizing the long-run statistial behavior of (11a) in a fashionsimilar to Wang (1993). The following result establishes that the apital dynamis arebounded away from zero below and bounded above by the value kmax from Assumption3 under all shoks.Lemma 8Under the hypotheses of Theorem 1, the mappings KE(�; ") de�ned in (11a) satisfy thefollowing for eah " 2 E :(i) KE(kmax; ") < kmax(ii) KE(k; ") > k for k suÆiently small. 9



Proof: Let " 2 E be arbitrary but �xed. Claim (i) follows from KE < KE0 and Assump-tion 3 whih impliesKE(kmax; ") � KE(kmax; "max) < KE0 (kmax; "max) = kmax:To prove (ii), suppose �rst that wmin := limk!0W(k; ") > 0. Then,limk!0(KE(k; ")� k) = KB(wmin) > 0from whih the laim follows. Seond, suppose wmin = 0. From the Euler equations(4a,b) and (5), we onlude that for eah k > 0 there exists "0 2 E suh thatBE(KE(k; "); "0)BE(k; ") � R(k; "0):As limk!0R(k; "0) =1, we infer that for at least one "0 2 E , it holds thatlimk!0 BE(KE(k; "); "0)BE(k; ") =1:As shown in the previous setion, Æw < B(w) < w for all w 2 W . Thus,limk!0W(KE(k; "); "0)ÆW(k; ") = "0"Æ limk!0W(KE(k; "); ")W(k; ") � limk!0 BE(KE(k; "); "0)BE(k; ") =1from whih we onlude that limk!0W(KE(k; "); ")W(k; ") =1:Thus, by strit monotoniity of W(�; "), KE(k; ") > k for k suÆiently small. �Using this result, let �kmin be the smallest �xed point of KE(�; "min) and �kmax be thelargest �xed point of KE(�; "max). Then, the interval �K := [�kmin; �kmax℄ is self-supportingfor the family (KE(�; "))"2E in the sense that k 2 �K implies KE(k; ") 2 �K for all " 2 E .Further, the set �K is attrating in the sense that for any k0 2 K , the proess fktgt�0generated by (11a) onverges to �K . We formally state this insight asLemma 9The set �K = [�kmin; �kmax℄ � R++ is self-supporting for the family (KE(�; "))"2E.At this point, however, note that the set �K may not be ergodi for the dynamis (11a).That is, there may exist proper subsets whih are self-supporting as well. The latterwould be exluded if the family (KE(�; "))"2E ould be shown to possess a stable �xed-point on�guration. In the latter ase, the results from Brok & Mirman (1972) an beapplied to show that the set �K is ergodi and supports a unique invariant probabilitydistribution, see also Wang (1993)). 10



3.3 Persistene of bubblesDe�ning �wmin := W(�kmin; "min) and �wmax := W(�kmax; "max), the wage proess fwtgt�0de�ned by (11a) will asymptotially onverge to the set �W := [ �wmin; �wmax℄. Likewise, by(11b) the bubble will asymptotially onverge to the set �B := B( �W ) = [B( �wmin);B( �wmax)℄.Thus, the equilibrium dynamial system (11a,b) onverges to a ompat set boundedaway from zero whih is self-supporting under all sequenes of shoks. As a onse-quene, the bubble along the BME is persistent in the sense that it remains boundedaway from zero and will not onverge to zero asymptotially. In the speial ase whereshoks are degenerate, the deterministi �nding from Tirole (1985) is reovered wherethe two-dimensional system (11a,b) is saddle-path stable and onverges to the uniquegolden-rule steady state.3.4 Stationary BMEIn stohasti models, the onept of an invariant probability distribution of the statevariables is widely applied to extend the notion of a �xed point in deterministi models.We will follow the literature by alling BME whih admit an invariant distribution aStationary BME (SBME). Sine all equilibrium variables are measurable funtions of thestate variables, it follows that all equilibrium variables possess an invariant distributionalong a SBME.To de�ne a SBME formally, let xt = (kt; "t), t � 0 denote the state variable andendow the state spae X =℄0; kmax℄ � E with the Borel-�-algebra B(X) to beome ameasurable spae. Then, the mapping KE : X �! R++ from (11a) and the time-invariant distribution � of the shok proess gives rise to a transition probability P :X �B(X) �! [0; 1℄ whih governs the statistial evolution of the proess fxtgt>0. Theonstrution of the transition probability is desribed in detail in Stokey & Luas (1994,pp.220). For x 2 X and B 2 B(X), the value P (x;B) is the probability that xt+1 2 Bgiven that xt = x. In the terminology used by DuÆe, Geanakoplos, Mas-Colell &MLennan (1994), P de�nes a time homogeneous Markov equilibrium (THME) on thestate spae X.Suppose that the initial state x0 is distributed aording to some probability measure �0on the measurable spae (X;B(X)). Then, P indues a sequene f�tgt�0 of probabilitymeasures on (X;B(X)) whih is de�ned reursively as�t(B) = ZXP (x;B)�t�1(dx); B 2 B(X): (12)We are now in a position to de�ne a SBME formally in the followingDe�nition 3A SBME is a probability measure � on the measurable spae (X;B(X)) that is invariantunder the transformation (12). 11



It is well-known that the existene of SBME is losely onneted to the existene ofompat self-supporting sets, f. Brok & Mirman (1972), Wang (1993), or Stokey &Luas (1994). Based on their results and Lemma 9 whih implies that �X := �K � E is aompat self-supporting set of (11a), we have the followingTheorem 2Under the hypotheses of Theorem 1, there exists a SBME for the eonomy E .4 ConlusionsBubbly Markov equilibria provide a suitable onept to study asset bubbles in OLGmodels with stohasti prodution. Using a funtional equation approah where BMEobtain as �xed points of an operator, the present paper established suÆient onditionsunder whih BME exist extending well-known results from deterministi models. Wealso showed that bubbles remain persistent along a non-trivial BME and give rise toan invariant probability distribution on the state spae. The latter were referred to aStationary BME.Several issues are on our researh agenda. First, we would like to study the welfaree�ets of asset bubbles and whether the injetion of a bubble is welfare improving. Inthis regard, we also seek to link our existene onditions to the ones derived in Demange& Laroque (2000). Seond, we seek to extend the present setup to inlude more generalpreferenes, prodution tehnologies, and orrelated prodution shoks whih follow aMarkov proess. Existing results from Morand & Re�ett (2007), MGovern, Morand &Re�ett (2012), and Hillebrand (2012b) suggest that the basi approah in this paper isamendable to all these extensions.A Mathematial AppendixA.1 Proof of Lemma 1(i) Let  be given and w 2 W be arbitrary but �xed. For k 2 K and " 2 E , set(k; ") :=  (W(k; ")) + kR(k; ") whih is a stritly inreasing funtion of k due tomonotoniity of  and (T1). For k 2 K , de�ne the funtions~B(k) := E � � (W(k; �))v0�(k; �)��E � �R(k; �)v0�(k; �)�� (A.1)and S(k) := k + ~B(k) = E � �(k; �)v0�(k; �)��E � �R(k; �)v0�(k; �)�� =: ~N(k)D(k) : (A.2)12



Sine  is ontinuous, so are the mappings ~B, ~N , D, and S. Observe that ~N in (A.2) isweakly inreasing due to (U1) and monotoniity of (�; ") while D is stritly dereasingwhih implies that S is stritly inreasing. Furthermore, by the boundary onditionsimposed in Assumptions 1 and 2 limk!0D(k) =1 (A.3)whih, together with the monotoniity of ~N implies0 � limk!0 ~B(k) � limk!0S(k) = limk!0 ~N(k)D(k) = 0: (A.4)For k 2 K , de�ne G(k;w) := u0(w � S(k))�D(k): (A.5)Then, the desired solution ~k solves G(~k;w) = 0. Observe that G(�;w) is a stritlyinreasing funtion whih follows from the monotoniity of S and D and u0. Thus, anyzero is neessarily unique. Also observe the boundary behavior limk!0G(k;w) = �1due to (A.3). By ontinuity, it suÆes to �nd a k < w suh that G(k;w) � 0. Suppose � 0. Then the solution is ~k = k0 := K0(w) de�ned by (6) and ~b = 0. If  6= 0,onsider the following two ases. First, S(k0) � w. Then, by (A.4) and monotoniityand ontinuity of S, there exists a unique value 0 < k̂ � k0 suh that S(k̂) = w whihimplies limk%k̂G(k;w) = 1. Seond, suppose S(k0) < w. Then, limk%k0 G(k;w) =u0(w � S(k0)) � D(k0) � G0(k0;w) = 0 with G0 de�ned by (6). Thus, in either ase,there exists a solution 0 < ~k � k0 < w. Setting ~b = ~B(~k) ompletes the proof. �A.2 Proof of Lemma 2Let  2 G be arbitrary. As shown in the previous proof, B = ~B ÆK with ~B de�nedin (A.1) and, for eah w 2 W , k = K (w) is the unique solution to G(k;w) = 0 with Gde�ned in (A.5). From (A.1), we infer diretly that B � 0,  > 0 implies B > 0 and = 0 implies B = 0. Furthermore, by (A.5) and the de�nition of K , for all w 2 Ww > S(K (w)) = K (w) + ~B (K (w)) > ~B (K (w)) = B (w):We show that w 7�! w�B (w) is (even stritly) inreasing. For this purpose, let w 2 Wand � > 0 be arbitrary suh that w+� 2 W . We show that B (w+�) < B (w) +�.By ontradition, suppose B (w + �) � B (w) + �. Note that G de�ned in (A.5) isstritly dereasing in w and stritly inreasing in k by strit monotoniity of D and S.These properties imply that K is stritly inreasing whih gives K (w +�) > K (w).Further, as shown in the previous proof, the funtion D de�ned in (A.2) is stritlydereasing whih gives D(K (w)) > D(K (w + �)). On the other hand, by (A.5) and13



our hypothesisD(K (w +�)) = u0(w +�� B (w +�)� K (w +�))� u0(w � B (w)� K (w +�))> u0(w � B (w)� K (w))= D(K (w))whih is a ontradition and proves the laim.Next, we show that B is inreasing. As B = ~B Æ K and we have already shown thatK is stritly inreasing, it remains to show that ~B de�ned in (A.1) is inreasing as well.To avoid trivialities, assume in the remainder that  > 0. Let k 2 K and � > 0 bearbitrary suh that k +� 2 K . We have to show that ~B(k +�) > ~B(k). By (T1), themap a 7�! av0(a+ b), a > 0 is inreasing for all b � 0. Using this in (A.1) and the fatthat both R(�; ") and v0 are stritly dereasing gives~B(k +�) > V (�) := E � � (W(k; �))v0� (W(k; ") + (k +�)R(k +�; �))�E � �R(k; �)v0� (W(k; ") + (k +�)R(k +�; �))� :As V (0) = ~B(k), it suÆes to show that V is weakly inreasing. Under the additionalhypothesis (U2) of onstant relative risk aversion, the following lemma holds.Lemma 10In addition to Assumption 2, let v satisfy (U2). Then, for any bounded random variablesX > 0 and Y > 0 de�ned on the probability spae (E ;B(E); �), the funtionH(a) := E � [Y v0(Y + aX)℄E � [Xv0(Y + aX)℄ ; a � 0is weakly inreasing.Proof of Lemma 10De�ne ~X := Xjv00(Y + aX)j 12 and ~Y := Y jv00(Y + aX)j 12 . Under the hypotheses of thelemma, the funtion H is C1 and the derivative is positive, if and only ifE � [ ~X2℄ E � [Y v0(Y + aX)℄ � E � [ ~X ~Y ℄ E � [Xv0(Y + aX)℄: (A.6)Under (T2), v0(Y + aX) = �jv00(Y + aX)j(Y + aX) permitting (A.6) to be written as�E � � ~X2�� 12�E � �~Y 2�� 12 � E � �j ~X ~Y j�: (A.7)By H�older's inequality (see Aliprantis & Border (2007, p.463 setting p = q = 2 whihimplies 1p + 1q = 1)), (A.7) is indeed satis�ed. �Employing Lemma 10 (setting Y :=  (W(k; �), X := R(k; �), and a = (k+�)g0(k+�)g0(k) {whih is inreasing in � by (T1) { shows that V is weakly inreasing whih proves~B(k +�) > V (�) � V (0) = ~B(k):Finally, adopting an argument used and proved in Morand & Re�ett (2003, p.1360),note that monotoniity of B and w 7�! w � B(w), w 2 W implies ontinuity of B. �14



A.3 Proof of Lemma 3Let  2 G be arbitrary. We only need to show that T ( ) = B is C1. First note that if is C1, so are the mappings ~B, S, D, and ~N de�ned in (A.1) and (A.2) and the mapG de�ned in (A.5). Reall that for eah w 2 W , the mapping K determines the uniquezero of G(�;w). Sine G1(k; w) > 0, the map K is C1 by the impliit funtion theorem.Thus, the omposition B = ~B Æ K is C1 as well. �A.4 Proof of Lemma 4We only prove the strit inequalities, as the proof of the weak inequalities is analogous.Let  1 >  0 be arbitrary but �xed. For � 2 [0; 1℄, de�ne  � := � 1 + (1 � �) 0.Sine G 0 is onvex,  � 2 G 0 for all �. Moreover, the map � 7�!  � =  0 + �� where� :=  1 �  0 > 0 is stritly inreasing.Let w 2 W be arbitrary but �xed. By Lemma 1 (and a slight abuse of notation),for eah � 2 [0; 1℄ there exists a unique pair (k�; b�) whih solves H1(k�; b�;w; �) =H1(k�; b�;w; �) = 0. We will show that the map � 7�! b�, � 2 [0; 1℄ is stritly inreasingand � 7�! k�, � 2 [0; 1℄ is stritly dereasing whih implies b1 > b0 and k1 < k0. Theproof employs the same struture as the one of Lemma 1. Write �(k; ") :=  �(W(k; "))+kR(k; "). First, the pair (k�; b�) satis�es b� = ~B(k�; �) where~B(k; �) := E � � �(W(k; �))v0��(k; �)��E � �R(k; �)v0��(k; �)�� =: N(k; �)D(k; �) ; k 2 K ; � 2 [0; 1℄: (A.8)For later referene, we ompute the partial derivatives of D and N . In this regard,note from (1a,b) that Wk(k; ") = �kRk(k; ") > 0 whih implies k(k; ") = R(k; ") +kRk(k; ")(1 �  0(W(k; "))) for k > 0 and " 2 E . Taking the derivative of (A.8) oneobtains, exploiting (U1) and omitting some arguments for notational learness�kN(k; �) = E � ��kRk(k; �) 0�(�)�v0(�) +  �(�)v00(�)�+  �(�)R(k; �)v00(�)�> �E � � �(�)R(k; �)jv00(�)j� > 0 (A.9)�kD(k; �) = E � �Rk(k; �)�v0(�) + kR(k; �)v00(�)(1�  0�(�))�+R(k; �)2v00(�)�< �E � �R(k; �)2jv00(�)j� < 0 (A.10)��N(k; �) = E � ��(k; �)�v0(�)�  �(W(k; �))jv00(�)j��� kE � ��(k; �)R(k; �)jv00���j� > 0 (A.11)��D(k; �) = �E � ��(k; �)R(k; �)jv00(�)j� < 0 (A.12)where �(k; ") :=  1(W(k; "))�  0(W(k; ")) > 0.We show that dk�d� < 0. As k� is the unique solution to G(k;�) := u0(w� k� ~B(k; �))�D(k; �) = 0, the derivative omputesdk�d� = �G�(k;�)Gk(k;�) ���k=k�= � ju00(�)j�� ~B(k�;�)� ��D(k�; �)ju00(�)j(1 + �k ~B(k�;�))� �kD(k�; �) : (A.13)15



Using (A.11) and (A.12), the partial derivative of (A.8) with respet to � satis�es�� ~B(k;�) = ��N(k; �)D(k; �)� ��D(k; �)N(k; �)D(k; �)2 > 0: (A.14)Also reall that �kD(k; �) < 0 by (A.10). Using these results and (A.12) in (A.13)together with �k ~B(k;�) � 0 whih follows from the monotoniity of ~B established inthe proof of Lemma 2, the laim follows.Finally, we show that db�d� > 0. As b� = ~B(k�; �) one obtainsdb�d� = �k ~B(k�; �)dk�d� + �� ~B(k�; �)whih, using (A.13) an be rearranged todb�d� = ju00(�)j�� ~B(k�;�) +M(k�;�)ju00(�)j(1 + �k ~B(k�;�))� �kD(k�; �)where M(k;�) := �k ~B(k;�)��D(k;�) � �� ~B(k;�)�kD(k;�). As the denominator andthe �rst term in the numerator are stritly positive, it suÆes to show thatM(k�;�) � 0.Using (A.14) and that�k ~B(k;�) = �kN(k; �)D(k; �)� �kD(k; �)N(k; �)D(k; �)2 (A.15)straightforward omputations yield thatM(k;�) = ��D(k; �)�kN(k; �)� �kD(k; �)��N(k; �)D(k; �)From (A.11) and (A.12), observe that ��N(k; �) � �k��N(k; �). It therefore suÆes toshow that �kN(k; �)+ k�kD(k; �) � 0. Using (A.9) and (A.10) yields the desired result�kN(k; �) + k�kD(k; �) < E � �kRk(k; �)v0(�)(1�  0�(�))� < 0: �A.5 Proof of Lemma 5For all Æ 2℄0; 1℄,  Æ 2 G 0. Using the struture from the proof of Lemma 1, (T Æ)(w) =~B(KÆ(w)) for all w 2 W where ~B is de�ned in (A.1) and KÆ(w) := K Æ(w) is the uniquesolution toG(k; Æ; w) := u0�w � k � ~B(k)�� E � �R(k; �)v0�ÆW(k; �) + kR(k; �)�� = 0: (A.16)16



Using (1a) and (1b), the map ~B an be written as~B(k) = ÆW(k; "max)R(k; "max) :Rearranging terms, it follows that T Æ(w) �  Æ(w) if and only ifW(KÆ(w); "max)w �R(KÆ(w); "max) > 0: (A.17)We seek to establish existene of a Æ 2℄0; 1[ suh that (A.17) holds for all w 2 W . As KÆis well-de�ned for all Æ 2 [0; 1℄ and depends ontinuously on Æ, it suÆes to show thatthe l.h.s in (A.17) is bounded away from zero for Æ = 0. Thus, we will show that thereexists  > 0 suh thatH(w) := W(K0(w); "max)w �R(K0(w); "max) �  (A.18)for all w 2 W . Here for eah w 2 W , K0(w) is determined by the impliit ondition (6).De�ne kmax > 0 as in Assumption 3 and set wmax := W(kmax; "max). By stability anduniqueness of kmax, the map w 7�! W(K0(w); "max) has wmax as its unique �xed pointwhih is stable implying W(K0(w); "max) > w for all w 2℄0; wmax[.1 Using Assumption4 and kmax = K0(wmax) givesH(wmax) = 1�R(kmax; "max) > 0:Furthermore, letting wmin > 0 be the unique solution to R(K0(w); "max) = 1, it followsthat H(w) > 0 for all w 2 [wmin; wmax℄. Thus, de�ning := minnH(w)jw 2 [wmin; wmax℄o > 0the laim in (A.18) will follow if we show that H is stritly dereasing on ℄0; wmin[.Let w 2℄0; wmin[ be arbitrary but �xed and set k := K0(w). The derivative of H an bewritten asH 0(w) = �kR(k; "max)w2 �W(k; "max)kR(k; "max) � Eg0(k)K00(w)wk k + wk � : (A.19)As k = K0(w) solves G(k; 0; w) = 0 with G de�ned in (A.16), the derivative satis�esK00(w) = ju00(w � k)jju00(w � k)j+ jg00(k)jg0(k) u0(w � k) + (1� Eg0(k))E � [R(k; �)2jv00(�)j℄ :1To see this, note that for all w 2 W there exists a unique k 2 K suh that w = W(k; "max).Assumption 3 and (7) yield k � KE0 (k; "max) = K0(w) whih, by strit monotoniity ofW(�; "max) givesw =W(k; "max) � W(K0(w); "max) where the last inequality is strit if and only if the �rst one is strit.17



Using E � [R(k; �)2jv00(�)j℄ = � u0(w�k)k by (U2) and (6) and u0(w�k)ju00(w�k)j = w�k� � w � k by(U1){(U3), it follows thatK00(w) = 11 + Eg0(k)w�kk� + (1� Eg0(k))w�kk� 11 + Eg0(k)w�kk + (1� Eg0(k))w�kk = kw: (A.20)Using this result and (T2), the braketed term in (A.19) an be rearranged asW(k; "max)kR(k; "max) � Eg0(k)K00(w)wk k + wk (1a;b)= 1� Eg(k)Eg(k) � Eg0(k)K00(w)wk k + wk(A:20)� 1� Eg(k)Eg(k) � Eg0(k)k + wk(T2)� (1� Eg(k)) � 1Eg(k) � k + wk �= (1� Eg(k)) �1� Eg(k)Eg(k) � wk � : (A.21)The laim will follow if we show that the braketed term in (A.21) is positive. Now, asargued in Remark ??, (U2) and (U3) imply that v0() = u0() = �� where � � 1 by(U1). The following auxiliary result shows that Assumption 4 implies further restritionson these parameters.Lemma 11Let ̂ := E � [(idE(�)="max)1��℄. Under (U1){(U3), Assumption 4 implies thatW(kmax; "max)kmaxR(kmax; "max) > 1 + ̂ 1�̂ 1� :Proof of Lemma 11.Set Rmax := R(kmax; "max) and, as before wmax =W(kmax; "max). Then, kmax = K0(wmax)whih, by (6) resp. (A.16), is equivalent to G(kmax; 0; wmax) = 0 and an be written as(wmax � kmax)�� = E � hR(kmax; �)�kmaxR(kmax; �)���i = ̂Rmax(kmaxRmax)��:Exploiting Rmax < 1, this an be rewritten to satisfy the following inequalities:kmaxRmax = ̂ 1�R 1�max(wmax � kmax) < ̂ 1� (wmax � kmax) < ̂ 1� (wmax � Rmaxkmax):Rearranging and using wmax =W(kmax; "max) and kmax = K0(wmax) gives the laim. �Reall that (T2) is equivalent to the map k 7! Eg(k) being weakly inreasing. Combinedwith Lemma 11 and (1a,b), k < kmax implies1� Eg(k)Eg(k) (1a;b)= W(k; "max)kR(k; "max) (T3)� W(kmax; "max)kmaxR(kmax; "max) > 1 + ̂ 1�̂ 1� :18
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