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Abstract

Bubbly Markov Equilibria (BME) are recursive equilibria on the natural state
space which admit a non-trivial bubble. The present paper studies the existence
and properties of BME in a stylized overlapping generations (OLG) model with
capital accumulation and random production shocks. BME obtain as fixed points
of an operator derived from the consumers’ Euler equations. Our main result
establishes sufficient conditions under which BME exist extending results well-
known from deterministic models. We also study the dynamics along the BME
and show that the state process converges to a stable set giving rise to a Stationary
BME where all equilibrium variables possess invariant probability distributions.

JEL classification: C62, D51, E32
Keywords: Asset Bubbles, Stochastic OLG, Bubbly Markov Equilibria.

*We would like to thank Caren Séhner for many discussions and helpful comments.

tDepartment of Economics, University of Cologne, Germany, Email: barbie@wiso.uni-koeln.de

tDepartment of Economics and Business Engineering, Karlsruhe Institute of Technology, Germany,
Email: marten.hillebrand@kit.edu



Introduction

A bubble is an intrinsically worthless asset which trades at a positive price such as fiat
money, governmental debt, or a bond that never pays any dividends. The theoretical
insight that the emergence of bubbles is compatible with fully optimal and rational
behavior of investors has triggered a broad literature aiming to identify the conditions
under which bubbles emerge and characterize their properties and implications. Despite
this interest, however, the vast majority of these studies adopts a deterministic frame-
work. The contribution of the present paper is to study asset bubbles in a stochastic
setting with random production shocks which to the best of our knowledge has not been
done in the literature.

A natural framework to study asset bubbles also to be adopted in this paper is the
Diamond overlapping generations model with production and endogenous capital accu-
mulation. For this class of economies, Tirole (1985) showed that bubbles emerge quite
naturally in the presence of dynamic inefficiencies due to an overaccumulation of capital.
Moreover, a unique recursive equilibrium where the bubble is a time-independent, non-
trivial function on the natural state space exists in his model. In the present paper, this
type of equilibrium will be referred to as a Bubbly Markov Equilibrium (BME). In Ti-
role’s deterministic model, a BME corresponds to the saddle-path of his two-dimensional
dynamical system.

Tirole’s model has been extended in various directions, e.g., to include monetary bubbles
as in Weil (1987) or, more recently, in Michel & Wigniolle (2003) and Gali (2013), and
to embody financial frictions as in Kunieda (2008), and many others. Common to
all these studies is that the production process remains deterministic. Starting with
the early contributions of Wang (1993, 1994), however, many studies of overlapping
generations economies with production adopt a stochastic setup where production is
subjected to exogenous random shocks. A natural question then is how the results on
the existence and properties of asset bubbles for deterministic OLG economies carry
over to a stochastic setting. Surprisingly, this questions is to the best of our knowledge
still unresolved and is therefore the theme of the present paper. Conceptually, we focus
on recursive equilibria (RE) where all equilibrium variables are time-invariant functions
of capital and the production shock. In Kiibler & Polemarchakis (2004), such equilibria
are referred to as Markov Equilibria (ME). In the present paper, we extend this notion
by referring to ME which admit a bubble as Bubbly Markov Equilibria (BME).

Recent studies of (bubbleless) ME in stochastic overlapping generations models with
production may be found in Wang (1993, 1994), Morand & Reffett (2007), McGovern,
Morand & Reffett (2012), or Hillebrand (2012b). In these papers, powerful results from
functional analysis developed and applied, e.g., in Coleman (1991, 2000) , or Greenwood
& Huffman (1995) are used to compute ME as fixed points of an operator derived from
the consumers’ Euler equations. Fortunately, it turns out that the computation of BME



is accessible to these techniques as well. Using this approach, a first objective of this
paper is to establish a general existence result of BME. The employed economy is similar
to Wang (1993) in that production shocks are i.i.d. and preferences are additive over
lifetime consumption. Our existence result requires a set of additional restrictions which
reduce to the ones in Tirole (1985) for the special case with degenerate shocks. Based
on these findings, a second objective is to characterize the long-run dynamics along the
BME and obtain conditions under which a Stationary BME (SBME) corresponding to
an invariant probability distribution on the endogenous state space exists. Our second
main result establishes conditions under which a SBME exists.

The paper is organized as follows. Section 1 introduces the model. The existence and
construction of BME are the theme of Section 2. Section 3 studies the dynamics along
the BME and the existence of stable sets. Section 4 concludes, proofs for all results are
relegated to the Mathematical Appendix.

1 The Model

1.1 Production sector

A single firm operates a linear homogeneous technology to produce an all-purpose output
commodity using capital and labor as inputs. In addition, production in period t is
subjected to an exogenous random production shock ¢, € £ C Ry . Per-capita output
y; in period t is produced from capital intensity k; > 0 and the shock according to the
intensive form technology f : R, x& — Ry, y; = f(ki;&4) := £19(k¢). Throughout, the
following restrictions on technology are imposed.

Assumption 1
The map g : R, — R, is C? with derivatives ¢" < 0 < ¢" and limy_,o ¢'(k) = oco.

Denote by Ey(z) := |Z$ES)| the elasticity of a differentiable function ¢ # 0. Below we

will occasionally impose the following additional restrictions:

(T1)Ey(k) <1Vk>0  (T2) E,(k) + |Ey (k)| < 1Vk > 0.

Restriction (T1) is equivalent to k — kR (k; €) being non-decreasing and is often imposed
in the literature, cf. Wang (1993) and others. Condition (T2) is equivalent to k — E, (k)
being non-decreasing. The latter holds for a large class of technologies including Cobb-
Douglas (g(k) = k%) and CES production (g(k) = [1 —a + ak"]é, 0 < p < 1 in which

case Ey(k) = m*5=)- Evidently, (T2) is stronger and implies (T1).

As in Wang (1993), shocks are i.i.d. over time with (marginal) distribution v supported
on £ where {emin, fmax} C € C [Emin,Emax] € Ryy. The process {&;}i>¢ induces a



filtration {F;};>o such that each e; is F;-measurable. Throughout, the notion of an
adapted process {&;}>o refers to this filtration and implies that each & can depend only
on random variables ,,, n < t. E;[-] := E[-|F;] is the conditional expectations operator.

At equilibrium, labor supply will be constant and normalized to unity. Market clearing
and profit maximizing behavior imply that the equilibrium wage w,; and capital return
r; are determined as

wy = Wk e) = eglk) — kg' (k)] (la)
re = Rlkyer) :=erg' (k). (1b)

1.2 The Bubble

The bubbly asset can be purchased in period ¢ at a price of unity and offers a random
return 77, > 0 during the next period. Let b, > 0 denote the (value of the) bubble at
time ¢ > 0. As a specific interpretation, one may think of a one-period lived bond in
which case b; is the number of bonds issued at time ¢. Other interpretations such as
real government debt or real money balances apply as well. The return process {77 };>9
determines the risk to which bubbly investments are subjected. The bubble is completely
self-financing in the sense that the payment obligation incurred during period ¢ is fully
financed by issuing new bubbly assets at time ¢+ 1. Thus, given a return process {r} }:>o
and an initial value by > 0, the bubble evolves according to the law of motion

bt+1 = T:+1bt, t Z 0. (2)

1.3 Consumption Sector

The consumption sector consists of overlapping generations of two-period lived con-
sumers. Young consumers earn income from supplying one unit of labor inelastically to
the labor market while old consumers earn capital income. For simplicity, there is no
population growth. A young consumer who takes decisions in period t observes her labor
income w; > 0 and faces returns r,,; on capital and r},; on the bubbly asset which enter
the decision problem as given random variables. The consumer chooses her investment
b in bubbles and capital investment s to maximize expected lifetime utility. Assuming
an additive von-Neumann Morgenstern utility function U(cY, ) = u(c?) + v(c¢®) over
lifetime consumption, the decision problem reads:

max{u(wt —b—s)+Efo(rf b+rss)]]s>0,b+s < wt}. (3)

b,s

Note that no short-selling constraints on bubbles are imposed at the individual level.
Throughout, we impose the following restrictions on the utility functions:



Assumption 2
Both u and v are C* with derivatives 2" < 0 < 2’ and lim,_,; 2(c) = o0, 2z € {u,v}.

The following additional restrictions will occasionally be used in the sequel:
(U1) Ey(c) <1¥e>0 (U2) Ey(c)=0Ve>0 (U3)v(c) =~yu(e), v> 0.

Observe that restriction (U2) of constant relative risk-aversion implies the form

i 1-6 :
) (et =) 0> 0,0#1 0
v(e) {7logc ifo—1 N

The savings decision s; derived from (3) determines the per-capita capital stock k;yq of
the following period. Exploiting this and (2), one obtains the following Euler equations
associated with the consumer’s decision problem (3) which must hold at equilibrium:

u'(wp = by — ki) = B[Rk )0 (b + ki R(Eegas )] (4a)
u'(wt — bt — kt—l—l)bt = Et |:bt_|_11}, (bt+1 + kt+1R(kt+1; ))] . (4b)

1.4 Equilibrium

The economy is & = (u, v, f,v). The most general notion of equilibrium is that of a
sequential (or sequence of markets) equilibrium (SE) to be introduced in the following

Definition 1
Given initial values ko > 0, g9 € £, and by > 0, a SE for & is an adapted stochastic

process {wt, e, T by, kt+1} which satisfies (1a,b), (2), and (4a,b) for all t > 0.

>0

In this paper, we focus on a particular class of equilibria where all equilibrium variables
at time ¢ are determined by time-invariant functions of some state variable x; with values
in the state space X. In the literature, such equilibria are called Recursive Equilibria
(RE). We confine ourselves to a class of recursive equilibria where the state variable is
x; = (k,e¢). The underlying state space is called the natural state space. Note that
the factor price mappings W and R from (1a,b) already satisfy this property. Following
the terminology of Kiibler & Polemarchakis (2004), RE on the natural state space are
called Markov equilibria (ME). Extending this terminology, we will refer to ME which
admit a bubble as Bubbly Markov equilibria (BME). If the bubble is trivial, i.e., by = 0,
a BME reduces to a ME in the usual sense as studied, e.g., in Wang (1993). Formally,
we have the following

Definition 2 (Bubbly Markov Equilibrium (BME))

A SE of & is called a BME if there exists a Borel set X C Ry, x & and measurable
mappings K¥ : X — Ry, and BY : X — R, such that k., = KE(k;,g;) and
by = BY(ky, &) for all t > 0.



A BME is called non-trivial if B > 0. At any non-trivial BME the bubble return is
given by the map R* : X x & — Ry,

BE(’CE(kta 5t)a 5t+1)

> 0.
BE(hy.e,) , >0 (5)

7':+1 = R*(ki, e, 6041) :=

If the BME is trivial, however, i.e., B¥ = 0, then the supporting return process is clearly
not uniquely defined, i.e., any process {r},,};>o which satisfies

u'(wy — ki) = By [ 0" (ki R(kega,+))] = 0

for all £ > 0 supports the equilibrium. A particular choice would be to set 7}, | = ry 1 =
R(kiy1,e001) for all £ > 0.

2 Existence of Bubbly Markov Equilibria

2.1 The trivial equilibrium

Under the additional restriction (T1), it is shown in Wang (1993) that & possesses a
unique trivial ME. The latter is associated with the mappings BY = 0 and KJ = Koo W
where Ky : Ry, — Ry, determines the unique solution k¥ = Ko(w) to the implicit
condition

Go(k,w) :=u'(w — k) — E,[R(k,-)v'(kR(k,-))] = 0. (6)

Note that the implicit function theorem implies that Ky is C!, strictly increasing, and
0 < Ko(w) < w for all w > 0. The capital process along the trivial BME evolves as

kior = K (ki e0) = Ko o W(ky, &1). (7)

Note that KCF is strictly increasing and C' in its first argument. Similar to Tirole (1985),
the properties of the trivial equilibrium are key to obtain conditions under which non-
trivial BME exists. In anticipation of this result, the remainder imposes the following

Assumption 3
The map KE (-, emax) from (7) has a unique non-trivial fixed point k., which is stable.

Uniqueness and stability of kpax imply k& < Ko(k, emay) for all k& € K :=]0, kyay|. Thus,
ky € K implies kiy = Kok, er) < Kokt Emax) < kmax. Assuming ko € K permits the
state space in Definition 2 to be chosen as X := K x £ along the trivial BME. Below
we show that this choice extends to the non-trivial case. Thus, a first consequence of
Assumption 3 is that it will allow us to obtain a bounded state space. Below we will see
that a second property of the fixed point k., is sufficient for non-trivial BME to exist.



2.2 Constructing an operator

In the sequel, we assume that Assumptions 1, 2, and 3 hold. We seek to obtain conditions
under which a non-trivial BME exists. For this purpose, we will use the Euler equations
(4a,b) to construct an operator whose non-trivial fixed points give rise to non-trivial
BME. Let kna.x and K be defined as in Assumption 3 and the previous subsection. We
also define wpnax := W(kmax, €max) and W :=]0, wp.x] = W(K x &).

As the current state z; = (k;, ;) enters the Euler equations (4a,b) only through the
wage w; = W(x;), we conjecture that, similar to the trivial equilibrium, the mappings
K¥ and B” from Definition 2 can be written as K¥ = K o W and B¥ = Bo W where
K:W — Kand B: W — R,. Based on this insight, our goal in this section is to
determine a function B: W — R, such that by = B(w;) for all times ¢ > 0 consistent
with (4a,b). To establish existence of such a solution, we will construct an operator on
a suitable function space whose fixed points satisfy this property.

Define the function space

1 is continuous , ¢ (w) < w for all w > 0
G = :W-—R, | w ¢(w) is weakly increasing : (8)
w — w — P(w) is weakly increasing

The space ¢ is endowed with the partial order 1; > 1y (11 > o) iff ¢y (w) > o(w)
(11 (w) > 1ho(w)) for all w € W. Our goal is to construct an operator 7' : 4 — ¢ whose
fixed points define BME. The key ingredients to this approach are the Euler equations
(4a,b). The idea is as follows: Suppose that the bubble during the following period is
determined by some function ) of next period’s wage. Then, for any given value w € W,
the current bubble b and capital investment k& must solve the Euler equations (4a,b).

Given ¢ € 4, let

Hi(k,byw, ) = u'(w—b—k)—E, [R(k; )" (vW(k;-)) + kR(k;-))]
Hy(k,byw, ) = u'(w—b—k)b—E, [w(W(k, ))v'(@/}(W(k )+ kR(k, ))] (9b)

which are defined for all w € W, k£ € K, and b > 0 such that k¥ + b < w. Existence and
uniqueness of this solution is ensured by the next result.

Lemma 1

In addition to Assumptions 1-3, let (U1) and (T1) be satisfied and 1> € &4 be arbitrary.
Then, for each w € W there exist unique values b>0and ke K satisfying E+b<w
such that Hl(k, b: w, ) = HQ(k, b; w, ) = 0.

Lemma 1 permits to define functions Ky : W — Ry, and B, : W — R, which
determine the unique solution to H;(k,b;w,v) = Hs(k,b;w,1) = 0 for each w € W.
This result permits to define an operator 7" on ¢ which associates with any function

Y € ¢4 the new function T'(¢)) := By.



Lemma 2

In addition to Assumptions 1-3, let (U1), (U2), and (T1) hold. Then T : 9 — 9.
Furthermore, v > 0 implies T'(¢)) > 0, 1» = 0 implies T(¢) = 0, and T'(idw) < idw. In
addition, K is continuous and satisfies Ky, < Ky for all ¢ € 9.

The last result permits the state space to be chosen as X = K x £ along a BME as well.

2.3 Properties of the operator

We seek to establish existence of a non-trivial fixed point ¢ € & of T, i.e., » > 0 and
T(v) = 1. As shown in Lemma 2, the trivial solution ¢» = 0 is always a fixed point,
so an abstract existence result will not help. Instead, we will explicitly construct non-
trivial fixed points as pointwise limits of function sequences. This approach also opens
up the possibility to compute fixed points numerically. The method follows the one in
Greenwood & Huffman (1995), see also the papers by Morand & Reffett (2003, 2007).

Our first task will be to establish additional properties of T" such as monotonicity, etc.
In this regard, the main obstacle is that the methods from differential calculus including
the implicit function theorem are not available for functions in 4. To remedy this
problem, we will temporarily restrict ourselves (respectively T') to the smaller set

G = {peG|yis C'} (10)

of continuously differentiable functions in ¢4. We denote by 7" the restriction of T' to
the smaller set ¢’. It will turn out that establishing the afore-mentioned properties for
T’ is sufficient to apply the construction principle below. The following result shows
that 7" preserves continuous differentiability.

Lemma 3
Under the hypotheses of Lemma 2, T' : 4' — 4'.

The following result establishes the desired monotonicity of 7" which is key to construct
fixed points below.

Lemma 4
In addition to Assumptions 1 — 3, let (U1l) and (T1) hold. Then, T" is monotonically
increasing, i.e., Yy > g implies T' (1) > T (1) and ¢ > 1y implies T" (1) > T'(1o).

Observe that ¢’ still contains the trivial solution ¢» = 0. Thus, we will need conditions
under which the operator 7" ’lifts’ or increases functions close to zero. For this purpose,
the following condition is required which essentially extends the one from Tirole (1985)
to the present stochastic setting.

Assumption 4
The largest fixed point from Assumption 3 satisfies R(kmax, Emax) < 1.

7



The merits of Assumption 4 is that we can establish the existence of a lower bound in
the following result.

Lemma 5
In addition to Assumptions 1-3, let (UI1)—(U3) and (T2) hold. For § €]0,1], define
s(w) := dw, w € W. If Assumption 4 holds, there exists a ¢ €]0, 1] such that T"ips > 1)5.

2.4 Constructing non-trivial fixed points

Based on the previous result, we are now in a position to explicitly construct a non-
trivial fixed point. In fact, our approach delivers two such solutions which coincide when
the fixed point is unique.

As a first step, define a sequence of functions (¢,),>0 by setting ¢y := 15 and 1,41 :=
T'(1,). By Lemma 3, this sequence is well-defined, i.e., ¢, € ¢’ for all n > 0. Further,
by virtue of Lemma 5 ¢y > ¢y which implies ¢,,.1 > 1, for all n > 0 by Lemma 4. For
we W, let

B(w) := lim 1 (w)

n—o0

which is well-defined as the sequence (¢, (w)),>1 is increasing and bounded by w. We
show that the limiting function satisfies B € ¢. For each n > 1, w — ¢, (w) and
w = w — Pp(w), w € W are monotonically increasing. Let 0 < w; < wy < Wpyay be
arbitrary. Then, the inequalities 1, (w1) < ¥, (we) and wy — Yp(wy) < wy — Yy (ws)
being true for all n > 1 also hold in the limit and imply that B inherits the previous
monotonicity properties. Using an argument developed and proved in Morand & Reffett
(2003, p.1369), these properties also imply continuity of B. Finally, B > ¢5 > 0 and, as
shown below, B(w) < w for all w € W. Thus, B € ¢.

As a second step, repeat the previous construction by setting @Zo = idw and JnH =
T'(1p,). Note that T"(¢y) < 1hp. Analogous reasonings give rise to the continuous
function

B(w) := lim ¥, (w).

n—o0

Standard arguments imply the following

Lemma 6
Both functions B and B constructed above are fixed points of T and satisfy 0 < s <
B < B < idy.

The previous results lead to the following

Lemma 7
Let B € & be a non-trivial fixed point of T" and Kz the associated capital function.
Then, K¥ := Kz oW and BY := B oW define a non-trivial BME for & on X =K x &.



Combining the construction devised in this section with Lemmata 6 and 7, the main
result of this section can be stated in the following

Theorem 1
Under Assumptions 1-4, and the additional restrictions (Ul)—(U3) and (T2), the econ-
omy & has at least one non-trivial BME.

3 Dynamics and Stationary BME

3.1 Dynamics along the BME

Let B € ¢4 be a non-trivial fixed point of 7" computed as in the previous section and
let K := Kz denote the induced capital function. In this section, our goal is to study
the equilibrium dynamics along the induced BME. Specifically, we would like to know
whether the bubble is persistent in the sense that lim;_, . b; > 0 P-a.s. As B > 0, the
bubble is non-persistent if and only if lim;_,,, w; = 0 along the BME on a set of shock
sequences of positive measure. Our argument will show that the latter is excluded by
the equilibrium dynamical system.

Given wg := W(kg, o) > 0, set by = B(wg). The dynamics along the BME read

ki = KE(kge0) = KOWV(k e1)) (11a)
by = Bk e) = BW(ki, ). (11b)

One observes that the equilibrium dynamics are essentially governed by the capital
dynamics (11a) while the equilibrium bubble in (11b) essentially mirrors the induced
equilibrium wage process. Note that (11a) is structurally of the same type as the bubble-
less case studied in Wang (1993).

3.2 Self-supporting sets

We are interested in characterizing the long-run statistical behavior of (11a) in a fashion
similar to Wang (1993). The following result establishes that the capital dynamics are
bounded away from zero below and bounded above by the value k., from Assumption
3 under all shocks.

Lemma 8
Under the hypotheses of Theorem 1, the mappings K" (-, ) defined in (11a) satisfy the
following for each ¢ € £:

(1) KF (kmaxs€) < Fmax

(ii) K¥(k,e) > k for k sufficiently small.



Proof: Let ¢ € € be arbitrary but fixed. Claim (i) follows from ¥ < K and Assump-
tion 3 which implies

ICE(kmaxa 6) S ’CE(kmaxa gmax) < IC[)E(kmaxa 6ma,x) - kmax-
To prove (ii), suppose first that wpy, := limg_,o W(k,e) > 0. Then,

hm(ICE(k,s) — k) = ICB(wmin) >0

k—0

from which the claim follows. Second, suppose wmi, = 0. From the Euler equations
(4a,b) and (5), we conclude that for each k& > 0 there exists &’ € £ such that

BE(KF (k,¢),¢")
BE (k<)

> R(k,e").

As limy_,o R(k,e") = oo, we infer that for at least one &’ € £, it holds that

E E !
i B (K2 (kye), &)

k=0 BF(k,e)

As shown in the previous section, dw < B(w) < w for all w € W. Thus,

W(KFE (k,e),e") € W(KF (k,€),¢e) BE(KE (k,¢),e")

li =—1 > i =
b0 oW(k, 2) ok W(ke)  —ks0 BE(ke) >
from which we conclude that
- WI(K"(k,e)e) _
A W(k,e) o
Thus, by strict monotonicity of W(-, &), K¥(k,e) > k for k sufficiently small. |

Using this result, let kmin be the smallest fixed point of ICE(-,6min) and k.. be the
largest fixed point of (-, emax). Then, the interval K := [kmin, kmax] is self-supporting
for the family (KF(-,)).ce in the sense that k& € K implies KF(k,e) € K for all £ € €.
Further, the set K is attracting in the sense that for any k, € K, the process {ki}i>0
generated by (11a) converges to K. We formally state this insight as

Lemma 9
The set K = [kmin, kmax] C Ry is self-supporting for the family (K¥(-,¢)).ce.

At this point, however, note that the set K may not be ergodic for the dynamics (11a).
That is, there may exist proper subsets which are self-supporting as well. The latter
would be excluded if the family (K¥(-,)).ce could be shown to possess a stable fixed-
point configuration. In the latter case, the results from Brock & Mirman (1972) can be
applied to show that the set K is ergodic and supports a unique invariant probability
distribution, see also Wang (1993)).

10



3.3 Persistence of bubbles

Defining wmin := W (Emin, Emin) and Wmax := W (kmax, Emax), the wage process {w;}i>o
defined by (11a) will asymptotically converge to the set W := [Win, Wmax). Likewise, by
(11b) the bubble will asymptotically converge to the set B := B(W) = [B(@Wwmin), B(Wmax)]-
Thus, the equilibrium dynamical system (11a,b) converges to a compact set bounded
away from zero which is self-supporting under all sequences of shocks. As a conse-
quence, the bubble along the BME is persistent in the sense that it remains bounded
away from zero and will not converge to zero asymptotically. In the special case where
shocks are degenerate, the deterministic finding from Tirole (1985) is recovered where
the two-dimensional system (11a,b) is saddle-path stable and converges to the unique
golden-rule steady state.

3.4 Stationary BME

In stochastic models, the concept of an invariant probability distribution of the state
variables is widely applied to extend the notion of a fixed point in deterministic models.
We will follow the literature by calling BME which admit an invariant distribution a
Stationary BME (SBME). Since all equilibrium variables are measurable functions of the
state variables, it follows that all equilibrium variables possess an invariant distribution
along a SBME.

To define a SBME formally, let x; = (ki &), t > 0 denote the state variable and
endow the state space X =|0, kpax] X € with the Borel-o-algebra #(X) to become a
measurable space. Then, the mapping £F : X — R, from (11a) and the time-
invariant distribution v of the shock process gives rise to a transition probability P :
X x #A(X) — [0, 1] which governs the statistical evolution of the process {z;};~¢. The
construction of the transition probability is described in detail in Stokey & Lucas (1994,
pp.220). For z € X and B € B(X), the value P(x, B) is the probability that ;. € B
given that x; = x. In the terminology used by Duffie, Geanakoplos, Mas-Colell &
McLennan (1994), P defines a time homogeneous Markov equilibrium (THME) on the
state space X.

Suppose that the initial state x; is distributed according to some probability measure pi
on the measurable space (X, B(X)). Then, P induces a sequence {;i};>¢ of probability
measures on (X, B(X)) which is defined recursively as

1y(B) = / Pz, B) jur(dz), B € B(X). (12)
X
We are now in a position to define a SBME formally in the following

Definition 3
A SBME is a probability measure j, on the measurable space (X, 2(X)) that is invariant
under the transformation (12).

11



It is well-known that the existence of SBME is closely connected to the existence of
compact self-supporting sets, cf. Brock & Mirman (1972), Wang (1993), or Stokey &
Lucas (1994). Based on their results and Lemma 9 which implies that X := K x £ is a
compact self-supporting set of (11a), we have the following

Theorem 2
Under the hypotheses of Theorem 1, there exists a SBMFE for the economy & .

4 Conclusions

Bubbly Markov equilibria provide a suitable concept to study asset bubbles in OLG
models with stochastic production. Using a functional equation approach where BME
obtain as fixed points of an operator, the present paper established sufficient conditions
under which BME exist extending well-known results from deterministic models. We
also showed that bubbles remain persistent along a non-trivial BME and give rise to
an invariant probability distribution on the state space. The latter were referred to a
Stationary BME.

Several issues are on our research agenda. First, we would like to study the welfare
effects of asset bubbles and whether the injection of a bubble is welfare improving. In
this regard, we also seek to link our existence conditions to the ones derived in Demange
& Laroque (2000). Second, we seek to extend the present setup to include more general
preferences, production technologies, and correlated production shocks which follow a
Markov process. Existing results from Morand & Reffett (2007), McGovern, Morand &
Reffett (2012), and Hillebrand (2012b) suggest that the basic approach in this paper is
amendable to all these extensions.

A Mathematical Appendix

A.1 Proof of Lemma 1

(i) Let ¢ be given and w € W be arbitrary but fixed. For k € K and ¢ € &, set
c(k;e) == Yv(W(k;e)) + kR(k;e) which is a strictly increasing function of k due to
monotonicity of ¢ and (T1). For k£ € K, define the functions

5o B [k ) (e(k; )]
Bk := E, [R(k;-)v' (c(k;-))] (A1)
and
g - B lek ) (elk )] N (k)
S(k) :==k+ B(k) = B RO )0 ()]~ DE) (A.2)



Since 1 is continuous, so are the mappings B, N, D, and S. Observe that N in (A.2) is
weakly increasing due to (U1l) and monotonicity of ¢(+;¢) while D is strictly decreasing
which implies that S is strictly increasing. Furthermore, by the boundary conditions
imposed in Assumptions 1 and 2

lim D(k) = o0 (A.3)

k—0

which, together with the monotonicity of N implies

0 < lim B(k) < lim S(k) = lim % = 0. (A.4)
For k € K, define
G(k;w) == u'(w — S(k)) — D(k). (A.5)

Then, the desired solution k solves G(k;w) = 0. Observe that G(-;w) is a strictly
increasing function which follows from the monotonicity of S and D and «’. Thus, any
zero is necessarily unique. Also observe the boundary behavior limy_,o G(k;w) = —o0
due to (A.3). By continuity, it suffices to find a k£ < w such that G(k;w) > 0. Suppose
¢ = 0. Then the solution is k& = k¢ := Ko(w) defined by (6) and b = 0. If ¢ # 0,
consider the following two cases. First, S(ky) > w. Then, by (A.4) and monotonicity
and continuity of S, there exists a unique value 0 < k < ko such that S(k) = w which
implies lim; .; G(k;w) = co. Second, suppose S(ko) < w. Then, limy ~, G(k;w) =
uw'(w — S(ky)) — D(ko) > Go(ko;w) = 0 with Gy defined by (6). Thus, in either case,
there exists a solution 0 < k < ko < w. Setting b = B(k) completes the proof. |

A.2 Proof of Lemma 2

Let 1) € & be arbitrary. As shown in the previous proof, B, = Rp o Ky with Rp defined
in (A.1) and, for each w € W, k = Ky (w) is the unique solution to G(k;w) = 0 with G
defined in (A.5). From (A.1), we infer directly that B, > 0, ¢» > 0 implies By > 0 and
1 = 0 implies By, = 0. Furthermore, by (A.5) and the definition of Iy, for all w € W

w > S(Ky(w)) = Ky (w) + By(Ky(w)) > By(KCy(w)) = By(w).

We show that w — w— By (w) is (even strictly) increasing. For this purpose, let w € W
and A > 0 be arbitrary such that w + A € W. We show that By (w+ A) < By(w) + A.
By contradiction, suppose By(w + A) > By(w) + A. Note that G defined in (A.5) is
strictly decreasing in w and strictly increasing in k£ by strict monotonicity of D and S.
These properties imply that /Cy is strictly increasing which gives ICy(w + A) > Ky (w).
Further, as shown in the previous proof, the function D defined in (A.2) is strictly
decreasing which gives D(ICy(w)) > D(Ky(w + A)). On the other hand, by (A.5) and

13



our hypothesis

D(Ky(w+A)) = u'(w+A—By(w+A) = Ky(w+ A))
> ' (w— By(w) — Ky(w + A))
> (= Bylw) — Ko(w))
= D(Ky(w))

which is a contradiction and proves the claim.

Next, we show that By, is increasing. As By, = Bo Ky and we have already shown that
KCy is strictly increasing, it remains to show that B defined in (A.1) is increasing as well.
To avoid trivialities, assume in the remainder that ¢» > 0. Let £ € K and A > 0 be
arbitrary such that k + A € K. We have to show that B(k 4+ A) > B(k). By (T1), the
map a — av’(a +b), a > 0 is increasing for all b > 0. Using this in (A.1) and the fact
that both R(-;¢) and o' are strictly decreasing gives

E, [ (W(k; )V (v (W(k, ) + (k + A)R(k + A, -))]

E, [R(k; v (v (W(k, ) + (k + A)R(k + A, -))]
As V(0) = B(k), it suffices to show that V is weakly increasing. Under the additional
hypothesis (U2) of constant relative risk aversion, the following lemma holds.

B(k+A) > V(A) :=

Lemma 10
In addition to Assumption 2, let v satisfy (U2). Then, for any bounded random variables
X >0 and Y > 0 defined on the probability space (€, %(E),v), the function

E[YV'(Y +aX))
Ho) =g o rax) @ 2°

is weakly increasing.

Proof of Lemma 10
Define X := X[0"(Y + aX)|2 and YV := Y|v"(Y 4 aX)|2. Under the hypotheses of the
lemma, the function H is C'! and the derivative is positive, if and only if

E, [XYE,[Yo' (Y 4+ aX)] > E,[XY]E, [ X0 (Y + aX)]. (A.6)
Under (T2), v'(Y 4+ aX) = 0|v" (Y + aX)|(Y + aX) permitting (A.6) to be written as

(B, [22])" (B, [77])" > B, [|X¥]]. (A7)
By Holder’s inequality (see Aliprantis & Border (2007, p.463 setting p = ¢ = 2 which
implies % + é =1)), (A.7) is indeed satisfied. O
Employing Lemma 10 (setting Y := v (W(k;-), X = R(k;+), and a = % -

which is increasing in A by (T1) — shows that V' is weakly increasing which proves
B(k+A) > V(A) > V(0) = B(k).
Finally, adopting an argument used and proved in Morand & Reffett (2003, p.1360),

note that monotonicity of B and w — w — B(w), w € W implies continuity of B. W
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A.3 Proof of Lemma 3

Let ¢ € & be arbitrary. We only need to show that T'(¢)) = By, is C'. First note that if
¥ is C', so are the mappings B, S, D, and N defined in (A.1) and (A.2) and the map
G defined in (A.5). Recall that for each w € W, the mapping K, determines the unique
zero of G(+;w). Since G1(k,w) > 0, the map K, is C* by the implicit function theorem.
Thus, the composition By, = Bo Ky is C' as well. [ |

A.4 Proof of Lemma 4

We only prove the strict inequalities, as the proof of the weak inequalities is analogous.
Let ¢, > o be arbitrary but fixed. For A € [0,1], define ¢y := Aoy + (1 — ).
Since ¥’ is convex, 1, € ¥4’ for all A\. Moreover, the map A — 1, = ¢y + AA where
A = 1)y —1py > 0 is strictly increasing.
Let w € W be arbitrary but fixed. By Lemma 1 (and a slight abuse of notation),
for each A\ € [0,1] there exists a unique pair (ky,by) which solves Hj(ky,by;w,\) =
Hi(ky,by;w, \) = 0. We will show that the map A — by, A € [0, 1] is strictly increasing
and A — ky, A € [0,1] is strictly decreasing which implies b; > by and k; < ko. The
proof employs the same structure as the one of Lemma 1. Write ¢y (k; &) := (W (k;2))+
kR(k; ). First, the pair (ky, by) satisfies by = B(ky, \) where
E, [ox(W(k; -))v' (ex(k; )] _ Nk N
E, [R(k;-)o'(ex(k;-))]  ~ D(k,A)
For later reference, we compute the partial derivatives of D and N. In this regard,
note from (la,b) that Wi(k;e) = —kRy(k;e) > 0 which implies ¢x(k;e) = R(k;e) +
ERy(k;e)(1 — ' (W(k;e))) for k > 0 and ¢ € £. Taking the derivative of (A.8) one
obtains, exploiting (Ul) and omitting some arguments for notational clearness

Nk, A) = By [=kRe(k; YA (=) (v'(=) + Ua(=)v"(=)) + Ua(-)R (K
> =B, [Ya(=)R(k; )" (=)]] >0

B(k,\) := ke K \elo1]. (A.8)

(-]
(A.9)

Dk, ) = B, [Ri(ks;-)(v'(=) + kR (k; )" (=)(1 = ¥4 (=) + R(k;)*0"(-)]

< =B, [R(k;-)*[v"(=)]] <0 (A.10)
AN (k) = E,[Ak) (0" (=) = eaW(E; )" (=)

> KE, [A(k;)R(E; ) |v" (=)]] >0 (A1)
Dk, A) = =B, [A(k;)R(k;-)|o"(=)]] <0 (A.12)

where A(k;e) == i, (W(k;e)) — oW (k;¢)) > 0.
We show that % < 0. As k, is the unique solution to G(k; \) == u/(w — k — B(k,\)) —
D(k,\) =0, the derivative computes
dky Gk [W"(5)loB (/an A) = hD(ky, A)
dA Gr(k; A) o=ty u”(=)|(1 + 0 B(ka; \)) — 0D (K, \)

(A.13)

15



Using (A.11) and (A.12), the partial derivative of (A.8) with respect to A satisfies

O\N (k, \)D(k, \) — 03D (k, )N (k, \)
D(k, \)?

MB(k; \) = > 0. (A.14)
Also recall that 0y D (k,A) < 0 by (A.10). Using these results and (A 12) in (A.13)
together with d,B(k;\) > 0 which follows from the monotonicity of B established in
the proof of Lemma 2, the claim follows.

Finally, we show that 22 > 0. As by = B(ky, \) one obtains

dby

dk)
d)\ 8/4: (k)\a )

5\ + 0xB(kx, \)

which, using (A.13) can be rearranged to

dby _ [u"(D)03B (ki A) + M (ks A)

A\ u"(=)|(1+ 0k B(kx; \)) — 9 D(kx, \)

where M(k;\) == 0pB(k; \)OxD(k; \) — O\B(k; \)OpD(k; \). As the denominator and
the first term in the numerator are strictly positive, it suffices to show that M (ky; \) > 0.
Using (A.14) and that

0u N (k, \)D(k, \) — 05 D(k, \)N (k, \)
D(k, \)?

O B(k; \) = (A.15)

straightforward computations yield that

O\D(k, NOuN (k, ) — 0p D (k, \)OXN (k, \)
D(k, \)

M(k; M) =

From (A.11) and (A.12), observe that O\N(k, \) > —kO\N(k, ). It therefore suffices to
show that 0N (k, \) + kO D(k, \) < 0. Using (A.9) and (A.10) yields the desired result

N (k,\) + kO D(k, \) < E, [kRy(k; -)v'(—) (1 — 4 (=))] < 0.

A.5 Proof of Lemma 5

For all § €]0,1], ¢5 € ¢4'. Using the structure from the proof of Lemma 1, (T;)(w) =
B(Ks(w)) for all w € W where B is defined in (A.1) and KCs(w) := Ky, (w) is the unique
solution to

G(k;6,w) :=v'(w — k — B(k)) — E, [R(k;)v'(6W(k;-) + kR(k;-))] =0.  (A.16)
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Using (1a) and (1b), the map B can be written as

~ W(E; €max)

B(k) =6 =——"=~.

(k) R(K; €max)
Rearranging terms, it follows that Tys(w) > ¢5(w) if and only if

W(Ks(w); emax)

w

— R(Ks(w); Emax) > 0. (A.17)

We seek to establish existence of a 0 €]0, 1] such that (A.17) holds for all w € W. As K
is well-defined for all § € [0,1] and depends continuously on §, it suffices to show that
the Lh.s in (A.17) is bounded away from zero for ¢ = 0. Thus, we will show that there
exists ¢ > (0 such that

W(’CO(w); gmax)

H(w) := ” — R(Ko(w); Emax) > ¢ (A.18)

for all w € W. Here for each w € W, Ky(w) is determined by the implicit condition (6).
Define kpax > 0 as in Assumption 3 and set wmax = W (kmax, €max)- By stability and
uniqueness of knyay, the map w — W(Ko(w), Emax) has wmay as its unique fixed point
which is stable implying W(Ko(w); €max) > w for all w €]0, wmax[.! Using Assumption
4 and kpax = Ko(Wmax) gives

H(wmax) =1~ R(kmax; 5max) > 0.

Furthermore, letting wy, > 0 be the unique solution to R(Ko(w); emax) = 1, it follows
that H(w) > 0 for all w € [Wyin, Wimax|. Thus, defining

c = min{H(w)|w € [Wmin, wmax]} >0

the claim in (A.18) will follow if we show that H is strictly decreasing on |0, wmin|[.

Let w €]0, wmin[ be arbitrary but fixed and set k := ICo(w). The derivative of H can be
written as

, ER(K; emax) | W(k; Emax) Ko (w)w k + w
H'(w) = — [kR(k;&“max) — Ey (k) : - ] : (A.19)

w2

As k = Ko(w) solves G(k;0,w) = 0 with G defined in (A.16), the derivative satisfies

u(w — )+ O (0 — k) 4 (1~ By (k)E, [R(k; 2| (-]

1To see this, note that for all w € W there exists a unique k¥ € K such that w = W(k;emax)-
Assumption 3 and (7) yield k < KF(k, emax) = Ko(w) which, by strict monotonicity of W(*; émax) gives
w = W(k; emax) < W(Ko(w);emax) where the last inequality is strict if and only if the first one is strict.
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Using B, [R(k; -)?[v"(—)[] = 0*14 by (U2) and (6) and etk = 228 > o — k by
(U1)—(U3), it follows that

/ _ 1
fol) = 14 By (k)45 + (1 — By (k) 2t
1 k
= 1+E9'(k)w—_k+(1—Egl(k))wT_k :E- (A20)

Using this result and (T2), the bracketed term in (A 19) can be rearranged as
11/7\’2((2;21)) B Eg,(k)/%(;ﬂ)w k J/; W (lab) Eg( gk) B Eg,(k)/%(;ﬂ)w k 4}; w
(A.Z20) Eg( gk) B Eg/(k)kJrTw
P e

= (1-E,(k) {71 _Ef(jzgk) = %} . (A21)

The claim will follow if we show that the bracketed term in (A.21) is positive. Now, as
argued in Remark ??, (U2) and (U3) imply that v'(c) = yu'(c) = y¢=? where 8 < 1 by
(U1). The following auxiliary result shows that Assumption 4 implies further restrictions
on these parameters.

Lemma 11
Let 4 := vE, [(ide () /emax) ™). Under (U1)—(U3), Assumption 4 implies that

W (kmax; Emax) >1+@%
KmaxR (Kmax; Emax) A5

Proof of Lemma 11.
Set Rmax = R(kmax; Emax) and, as before wpax = W(kmax; Emax)- Then, knax = Ko(Wmax)
which, by (6) resp. (A.16), is equivalent to G (kmax; 0, Wmax) = 0 and can be written as

(wmax - kmax)_a = nyI/ [R(kmax; ) (kmaxR(kmax; '))_0:| = &Rmax(kmameax)_g-

Exploiting Ry, < 1, this can be rewritten to satisfy the following inequalities:

1
kmameax - ’A}/%Rl%aX(wmax - kmax) < ﬁ/é (wmax - kmax) < "A)/é (wmax - Rmakaax)-

Rearranging and using wmax = W(kmax; €max) and kmax = Ko(wWmax) gives the claim. O

Recall that (T2) is equivalent to the map k — E, (k) being weakly increasing. Combined
with Lemma 11 and (1a,b), k < kpay implies
L= By(k) (1a0) Wk fmax) 7 W (kmaxi omax) L +57

= >
Eg(k) kR(k;gmax) o kmaxR(kmax;gmax) ’A)/

D=
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Thus, positivity of the bracketed term in (A.21) will follow if we show that

=

1474
G

>

>| &

. (A.22)

Using R(k;emax) > 1 and exploiting (U1)—(U3), it follows from G(k;0,w) = 0 that
(= k)™ = B, ROk ) (kR (ki) | = AR ) k" > 317

where 4 is defined as in Lemma 11. Rearranging shows that (A.22) is indeed satisfied.
Thus, the bracketed term in (A.21) is positive implying H'(w) < 0 for all w €]0, wpmin[-
This proves (A.18) and the claim. |
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