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Abstra
tBubbly Markov Equilibria (BME) are re
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e whi
h admit a non-trivial bubble. The present paper studies the existen
eand properties of BME in a stylized overlapping generations (OLG) model with
apital a

umulation and random produ
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onsumers' Euler equations. Our main resultestablishes suÆ
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Introdu
tionA bubble is an intrinsi
ally worthless asset whi
h trades at a positive pri
e su
h as �atmoney, governmental debt, or a bond that never pays any dividends. The theoreti
alinsight that the emergen
e of bubbles is 
ompatible with fully optimal and rationalbehavior of investors has triggered a broad literature aiming to identify the 
onditionsunder whi
h bubbles emerge and 
hara
terize their properties and impli
ations. Despitethis interest, however, the vast majority of these studies adopts a deterministi
 frame-work. The 
ontribution of the present paper is to study asset bubbles in a sto
hasti
setting with random produ
tion sho
ks whi
h to the best of our knowledge has not beendone in the literature.A natural framework to study asset bubbles also to be adopted in this paper is theDiamond overlapping generations model with produ
tion and endogenous 
apital a

u-mulation. For this 
lass of e
onomies, Tirole (1985) showed that bubbles emerge quitenaturally in the presen
e of dynami
 ineÆ
ien
ies due to an overa

umulation of 
apital.Moreover, a unique re
ursive equilibrium where the bubble is a time-independent, non-trivial fun
tion on the natural state spa
e exists in his model. In the present paper, thistype of equilibrium will be referred to as a Bubbly Markov Equilibrium (BME). In Ti-role's deterministi
 model, a BME 
orresponds to the saddle-path of his two-dimensionaldynami
al system.Tirole's model has been extended in various dire
tions, e.g., to in
lude monetary bubblesas in Weil (1987) or, more re
ently, in Mi
hel & Wigniolle (2003) and Gali (2013), andto embody �nan
ial fri
tions as in Kunieda (2008), and many others. Common toall these studies is that the produ
tion pro
ess remains deterministi
. Starting withthe early 
ontributions of Wang (1993, 1994), however, many studies of overlappinggenerations e
onomies with produ
tion adopt a sto
hasti
 setup where produ
tion issubje
ted to exogenous random sho
ks. A natural question then is how the results onthe existen
e and properties of asset bubbles for deterministi
 OLG e
onomies 
arryover to a sto
hasti
 setting. Surprisingly, this questions is to the best of our knowledgestill unresolved and is therefore the theme of the present paper. Con
eptually, we fo
uson re
ursive equilibria (RE) where all equilibrium variables are time-invariant fun
tionsof 
apital and the produ
tion sho
k. In K�ubler & Polemar
hakis (2004), su
h equilibriaare referred to as Markov Equilibria (ME). In the present paper, we extend this notionby referring to ME whi
h admit a bubble as Bubbly Markov Equilibria (BME).Re
ent studies of (bubbleless) ME in sto
hasti
 overlapping generations models withprodu
tion may be found in Wang (1993, 1994), Morand & Re�ett (2007), M
Govern,Morand & Re�ett (2012), or Hillebrand (2012b). In these papers, powerful results fromfun
tional analysis developed and applied, e.g., in Coleman (1991, 2000) , or Greenwood& Hu�man (1995) are used to 
ompute ME as �xed points of an operator derived fromthe 
onsumers' Euler equations. Fortunately, it turns out that the 
omputation of BME1



is a

essible to these te
hniques as well. Using this approa
h, a �rst obje
tive of thispaper is to establish a general existen
e result of BME. The employed e
onomy is similarto Wang (1993) in that produ
tion sho
ks are i.i.d. and preferen
es are additive overlifetime 
onsumption. Our existen
e result requires a set of additional restri
tions whi
hredu
e to the ones in Tirole (1985) for the spe
ial 
ase with degenerate sho
ks. Basedon these �ndings, a se
ond obje
tive is to 
hara
terize the long-run dynami
s along theBME and obtain 
onditions under whi
h a Stationary BME (SBME) 
orresponding toan invariant probability distribution on the endogenous state spa
e exists. Our se
ondmain result establishes 
onditions under whi
h a SBME exists.The paper is organized as follows. Se
tion 1 introdu
es the model. The existen
e and
onstru
tion of BME are the theme of Se
tion 2. Se
tion 3 studies the dynami
s alongthe BME and the existen
e of stable sets. Se
tion 4 
on
ludes, proofs for all results arerelegated to the Mathemati
al Appendix.1 The Model1.1 Produ
tion se
torA single �rm operates a linear homogeneous te
hnology to produ
e an all-purpose output
ommodity using 
apital and labor as inputs. In addition, produ
tion in period t issubje
ted to an exogenous random produ
tion sho
k "t 2 E � R++ . Per-
apita outputyt in period t is produ
ed from 
apital intensity kt � 0 and the sho
k a

ording to theintensive form te
hnology f : R+ �E �! R+ , yt = f(kt; "t) := "tg(kt). Throughout, thefollowing restri
tions on te
hnology are imposed.Assumption 1The map g : R+ �! R+ is C2 with derivatives g00 < 0 < g0 and limk!0 g0(k) =1.Denote by E�(z) := j z�0(z)�(z) j the elasti
ity of a di�erentiable fun
tion � 6= 0. Below wewill o

asionally impose the following additional restri
tions:(T1)Eg0(k) � 1 8k > 0 (T2)Eg(k) + jEg0(k)j � 1 8k > 0:Restri
tion (T1) is equivalent to k 7! kR(k; ") being non-de
reasing and is often imposedin the literature, 
f. Wang (1993) and others. Condition (T2) is equivalent to k 7! Eg(k)being non-de
reasing. The latter holds for a large 
lass of te
hnologies in
luding Cobb-Douglas (g(k) = k�) and CES produ
tion (g(k) = [1 � a + ak%℄ 1% , 0 < % < 1 in whi
h
ase Eg(k) = aa+(1�a)k�% ). Evidently, (T2) is stronger and implies (T1).As in Wang (1993), sho
ks are i.i.d. over time with (marginal) distribution � supportedon E where f"min; "maxg � E � ["min; "max℄ � R++ . The pro
ess f"tgt�0 indu
es a2



�ltration fFtgt�0 su
h that ea
h "t is Ft-measurable. Throughout, the notion of anadapted pro
ess f�tgt�0 refers to this �ltration and implies that ea
h �t 
an depend onlyon random variables "n, n � t. E t [�℄ := E [�jFt ℄ is the 
onditional expe
tations operator.At equilibrium, labor supply will be 
onstant and normalized to unity. Market 
learingand pro�t maximizing behavior imply that the equilibrium wage wt and 
apital returnrt are determined as wt = W(kt; "t) := "t[g(k)� kg0(k)℄ (1a)rt = R(kt; "t) := "t g0(k): (1b)1.2 The BubbleThe bubbly asset 
an be pur
hased in period t at a pri
e of unity and o�ers a randomreturn r?t+1 > 0 during the next period. Let bt � 0 denote the (value of the) bubble attime t � 0. As a spe
i�
 interpretation, one may think of a one-period lived bond inwhi
h 
ase bt is the number of bonds issued at time t. Other interpretations su
h asreal government debt or real money balan
es apply as well. The return pro
ess fr?t gt�0determines the risk to whi
h bubbly investments are subje
ted. The bubble is 
ompletelyself-�nan
ing in the sense that the payment obligation in
urred during period t is fully�nan
ed by issuing new bubbly assets at time t+1. Thus, given a return pro
ess fr?t gt�0and an initial value b0 � 0, the bubble evolves a

ording to the law of motionbt+1 = r?t+1bt; t � 0: (2)1.3 Consumption Se
torThe 
onsumption se
tor 
onsists of overlapping generations of two-period lived 
on-sumers. Young 
onsumers earn in
ome from supplying one unit of labor inelasti
ally tothe labor market while old 
onsumers earn 
apital in
ome. For simpli
ity, there is nopopulation growth. A young 
onsumer who takes de
isions in period t observes her laborin
ome wt > 0 and fa
es returns rt+1 on 
apital and r?t+1 on the bubbly asset whi
h enterthe de
ision problem as given random variables. The 
onsumer 
hooses her investmentb in bubbles and 
apital investment s to maximize expe
ted lifetime utility. Assumingan additive von-Neumann Morgenstern utility fun
tion U(
y; 
o) = u(
y) + v(
o) overlifetime 
onsumption, the de
ision problem reads:maxb;s nu(wt � b� s) + E t�v�r?t+1 b+ rt+1 s���� s � 0; b+ s � wto: (3)Note that no short-selling 
onstraints on bubbles are imposed at the individual level.Throughout, we impose the following restri
tions on the utility fun
tions:3



Assumption 2Both u and v are C2 with derivatives z00 < 0 < z0 and lim
!0 z0(
) =1, z 2 fu; vg.The following additional restri
tions will o

asionally be used in the sequel:(U1) Ev0(
) � 1 8
 > 0 (U2) Ev0(
) � � 8
 > 0 (U3) v(
) � 
u(
); 
 > 0:Observe that restri
tion (U2) of 
onstant relative risk-aversion implies the formv(
) = ( 
1�� �
1�� � 1� if � > 0; � 6= 1
 log 
 if � = 1 ; 
 > 0:The savings de
ision st derived from (3) determines the per-
apita 
apital sto
k kt+1 ofthe following period. Exploiting this and (2), one obtains the following Euler equationsasso
iated with the 
onsumer's de
ision problem (3) whi
h must hold at equilibrium:u0(wt � bt � kt+1) = E t�R(kt+1; �)v0�bt+1 + kt+1R(kt+1; �)�� (4a)u0(wt � bt � kt+1)bt = E t�bt+1v0�bt+1 + kt+1R(kt+1; �)��: (4b)1.4 EquilibriumThe e
onomy is E = hu; v; f; �i. The most general notion of equilibrium is that of asequential (or sequen
e of markets) equilibrium (SE) to be introdu
ed in the followingDe�nition 1Given initial values k0 > 0, "0 2 E , and b0 � 0, a SE for E is an adapted sto
hasti
pro
ess �wt; rt; r?t ; bt; kt+1	t�0 whi
h satis�es (1a,b), (2), and (4a,b) for all t � 0.In this paper, we fo
us on a parti
ular 
lass of equilibria where all equilibrium variablesat time t are determined by time-invariant fun
tions of some state variable xt with valuesin the state spa
e X. In the literature, su
h equilibria are 
alled Re
ursive Equilibria(RE). We 
on�ne ourselves to a 
lass of re
ursive equilibria where the state variable isxt = (kt; "t). The underlying state spa
e is 
alled the natural state spa
e. Note thatthe fa
tor pri
e mappingsW and R from (1a,b) already satisfy this property. Followingthe terminology of K�ubler & Polemar
hakis (2004), RE on the natural state spa
e are
alled Markov equilibria (ME). Extending this terminology, we will refer to ME whi
hadmit a bubble as Bubbly Markov equilibria (BME). If the bubble is trivial, i.e., bt � 0,a BME redu
es to a ME in the usual sense as studied, e.g., in Wang (1993). Formally,we have the followingDe�nition 2 (Bubbly Markov Equilibrium (BME))A SE of E is 
alled a BME if there exists a Borel set X � R++ � E and measurablemappings KE : X �! R++ and BE : X �! R+ su
h that kt+1 = KE(kt; "t) andbt = BE(kt; "t) for all t � 0. 4



A BME is 
alled non-trivial if BE > 0. At any non-trivial BME the bubble return isgiven by the map R? : X � E �! R++ ,r?t+1 = R?(kt; "t; "t+1) := BE(KE(kt; "t); "t+1)BE(kt; "t) ; t � 0: (5)If the BME is trivial, however, i.e., BE � 0, then the supporting return pro
ess is 
learlynot uniquely de�ned, i.e., any pro
ess fr?t+1gt�0 whi
h satis�esu0(wt � kt+1) = E � [r?t+1v0(kt+1R(kt+1; �))℄ = 0for all t � 0 supports the equilibrium. A parti
ular 
hoi
e would be to set r?t+1 = rt+1 =R(kt+1; "t+1) for all t � 0.2 Existen
e of Bubbly Markov Equilibria2.1 The trivial equilibriumUnder the additional restri
tion (T1), it is shown in Wang (1993) that E possesses aunique trivial ME. The latter is asso
iated with the mappings BE0 � 0 and KE0 = K0 ÆWwhere K0 : R++ �! R++ determines the unique solution k = K0(w) to the impli
it
ondition G0(k; w) := u0(w � k)� E � [R(k; �)v0(kR(k; �))℄ = 0: (6)Note that the impli
it fun
tion theorem implies that K0 is C1, stri
tly in
reasing, and0 < K0(w) < w for all w > 0. The 
apital pro
ess along the trivial BME evolves askt+1 = KE0 (kt; "t) = K0 ÆW(kt; "t): (7)Note that KE0 is stri
tly in
reasing and C1 in its �rst argument. Similar to Tirole (1985),the properties of the trivial equilibrium are key to obtain 
onditions under whi
h non-trivial BME exists. In anti
ipation of this result, the remainder imposes the followingAssumption 3The map KE0 (�; "max) from (7) has a unique non-trivial �xed point kmax whi
h is stable.Uniqueness and stability of kmax imply k � K0(k; "max) for all k 2 K :=℄0; kmax℄. Thus,kt 2 K implies kt+1 = K0(kt; "t) � K0(kt; "max) � kmax. Assuming k0 2 K permits thestate spa
e in De�nition 2 to be 
hosen as X := K � E along the trivial BME. Belowwe show that this 
hoi
e extends to the non-trivial 
ase. Thus, a �rst 
onsequen
e ofAssumption 3 is that it will allow us to obtain a bounded state spa
e. Below we will seethat a se
ond property of the �xed point kmax is suÆ
ient for non-trivial BME to exist.5



2.2 Constru
ting an operatorIn the sequel, we assume that Assumptions 1, 2, and 3 hold. We seek to obtain 
onditionsunder whi
h a non-trivial BME exists. For this purpose, we will use the Euler equations(4a,b) to 
onstru
t an operator whose non-trivial �xed points give rise to non-trivialBME. Let kmax and K be de�ned as in Assumption 3 and the previous subse
tion. Wealso de�ne wmax :=W(kmax; "max) and W :=℄0; wmax℄ =W(K � E).As the 
urrent state xt = (kt; "t) enters the Euler equations (4a,b) only through thewage wt = W(xt), we 
onje
ture that, similar to the trivial equilibrium, the mappingsKE and BE from De�nition 2 
an be written as KE = K ÆW and BE = B Æ W whereK : W �! K and B : W �! R+ . Based on this insight, our goal in this se
tion is todetermine a fun
tion B : W �! R++ su
h that bt = B(wt) for all times t � 0 
onsistentwith (4a,b). To establish existen
e of su
h a solution, we will 
onstru
t an operator ona suitable fun
tion spa
e whose �xed points satisfy this property.De�ne the fun
tion spa
e
G := 8<: : W �! R+ ������  is 
ontinuous ;  (w) � w for all w > 0w 7!  (w) is weakly in
reasingw 7! w �  (w) is weakly in
reasing 9=; : (8)The spa
e G is endowed with the partial order  1 �  2 ( 1 >  2) i�  1(w) �  2(w)( 1(w) >  2(w)) for all w 2 W . Our goal is to 
onstru
t an operator T : G �! G whose�xed points de�ne BME. The key ingredients to this approa
h are the Euler equations(4a,b). The idea is as follows: Suppose that the bubble during the following period isdetermined by some fun
tion  of next period's wage. Then, for any given value w 2 W ,the 
urrent bubble b and 
apital investment k must solve the Euler equations (4a,b).Given  2 G , letH1(k; b;w;  ) := u0(w � b� k)� E � �R(k; �)v0� (W(k; �)) + kR(k; �)�� (9a)H2(k; b;w;  ) := u0(w � b� k)b� E � � (W(k; �))v0� (W(k; �)) + kR(k; �)�� (9b)whi
h are de�ned for all w 2 W , k 2 K , and b � 0 su
h that k + b < w. Existen
e anduniqueness of this solution is ensured by the next result.Lemma 1In addition to Assumptions 1{3, let (U1) and (T1) be satis�ed and  2 G be arbitrary.Then, for ea
h w 2 W there exist unique values ~b � 0 and ~k 2 K satisfying ~k + ~b < wsu
h that H1(~k;~b;w;  ) = H2(~k;~b;w;  ) = 0.Lemma 1 permits to de�ne fun
tions K : W �! R++ and B : W �! R+ whi
hdetermine the unique solution to H1(~k;~b;w;  ) = H2(~k;~b;w;  ) = 0 for ea
h w 2 W .This result permits to de�ne an operator T on G whi
h asso
iates with any fun
tion 2 G the new fun
tion T ( ) := B . 6



Lemma 2In addition to Assumptions 1{3, let (U1), (U2), and (T1) hold. Then T : G �! G .Furthermore,  > 0 implies T ( ) > 0,  = 0 implies T ( ) = 0, and T (idW ) < idW . Inaddition, K is 
ontinuous and satis�es K � K0 for all  2 G .The last result permits the state spa
e to be 
hosen as X = K �E along a BME as well.2.3 Properties of the operatorWe seek to establish existen
e of a non-trivial �xed point  2 G of T , i.e.,  > 0 andT ( ) =  . As shown in Lemma 2, the trivial solution  = 0 is always a �xed point,so an abstra
t existen
e result will not help. Instead, we will expli
itly 
onstru
t non-trivial �xed points as pointwise limits of fun
tion sequen
es. This approa
h also opensup the possibility to 
ompute �xed points numeri
ally. The method follows the one inGreenwood & Hu�man (1995), see also the papers by Morand & Re�ett (2003, 2007).Our �rst task will be to establish additional properties of T su
h as monotoni
ity, et
.In this regard, the main obsta
le is that the methods from di�erential 
al
ulus in
ludingthe impli
it fun
tion theorem are not available for fun
tions in G . To remedy thisproblem, we will temporarily restri
t ourselves (respe
tively T ) to the smaller set
G
0 := f 2 G j is C1g (10)of 
ontinuously di�erentiable fun
tions in G . We denote by T 0 the restri
tion of T tothe smaller set G 0. It will turn out that establishing the afore-mentioned properties forT 0 is suÆ
ient to apply the 
onstru
tion prin
iple below. The following result showsthat T 0 preserves 
ontinuous di�erentiability.Lemma 3Under the hypotheses of Lemma 2, T 0 : G

0 �! G
0.The following result establishes the desired monotoni
ity of T 0 whi
h is key to 
onstru
t�xed points below.Lemma 4In addition to Assumptions 1 { 3, let (U1) and (T1) hold. Then, T 0 is monotoni
allyin
reasing, i.e.,  1 �  0 implies T 0( 1) � T 0( 0) and  1 >  0 implies T 0( 1) > T 0( 0).Observe that G 0 still 
ontains the trivial solution  � 0. Thus, we will need 
onditionsunder whi
h the operator T 0 'lifts' or in
reases fun
tions 
lose to zero. For this purpose,the following 
ondition is required whi
h essentially extends the one from Tirole (1985)to the present sto
hasti
 setting.Assumption 4The largest �xed point from Assumption 3 satis�es R(kmax; "max) < 1.7



The merits of Assumption 4 is that we 
an establish the existen
e of a lower bound inthe following result.Lemma 5In addition to Assumptions 1{3, let (U1){(U3) and (T2) hold. For Æ 2℄0; 1[, de�ne Æ(w) := Æw, w 2 W . If Assumption 4 holds, there exists a Æ 2℄0; 1[ su
h that T 0 Æ >  Æ.2.4 Constru
ting non-trivial �xed pointsBased on the previous result, we are now in a position to expli
itly 
onstru
t a non-trivial �xed point. In fa
t, our approa
h delivers two su
h solutions whi
h 
oin
ide whenthe �xed point is unique.As a �rst step, de�ne a sequen
e of fun
tions ( n)n�0 by setting  0 :=  Æ and  n+1 :=T 0( n). By Lemma 3, this sequen
e is well-de�ned, i.e.,  n 2 G 0 for all n � 0. Further,by virtue of Lemma 5  1 >  0 whi
h implies  n+1 >  n for all n � 0 by Lemma 4. Forw 2 W , let B(w) := limn!1 n(w)whi
h is well-de�ned as the sequen
e ( n(w))n�1 is in
reasing and bounded by w. Weshow that the limiting fun
tion satis�es B 2 G . For ea
h n � 1, w 7!  n(w) andw 7! w �  n(w), w 2 W are monotoni
ally in
reasing. Let 0 < w1 < w2 � wmax bearbitrary. Then, the inequalities  n(w1) �  n(w2) and w1 �  n(w1) � w2 �  n(w2)being true for all n � 1 also hold in the limit and imply that B inherits the previousmonotoni
ity properties. Using an argument developed and proved in Morand & Re�ett(2003, p.1369), these properties also imply 
ontinuity of B. Finally, B >  Æ > 0 and, asshown below, B(w) < w for all w 2 W . Thus, B 2 G .As a se
ond step, repeat the previous 
onstru
tion by setting e 0 := idW and e n+1 :=T 0( e n). Note that T 0( e 0) < e 0. Analogous reasonings give rise to the 
ontinuousfun
tion B(w) := limn!1 n(w):Standard arguments imply the followingLemma 6Both fun
tions B and B 
onstru
ted above are �xed points of T and satisfy 0 <  Æ <B � B < idW .The previous results lead to the followingLemma 7Let B 2 G be a non-trivial �xed point of T and KB the asso
iated 
apital fun
tion.Then, KE := KB ÆW and BE := B ÆW de�ne a non-trivial BME for E on X = K � E .8



Combining the 
onstru
tion devised in this se
tion with Lemmata 6 and 7, the mainresult of this se
tion 
an be stated in the followingTheorem 1Under Assumptions 1{4, and the additional restri
tions (U1){(U3) and (T2), the e
on-omy E has at least one non-trivial BME.3 Dynami
s and Stationary BME3.1 Dynami
s along the BMELet B 2 G be a non-trivial �xed point of T 
omputed as in the previous se
tion andlet K := KB denote the indu
ed 
apital fun
tion. In this se
tion, our goal is to studythe equilibrium dynami
s along the indu
ed BME. Spe
i�
ally, we would like to knowwhether the bubble is persistent in the sense that limt!1 bt > 0 P{a.s. As B > 0, thebubble is non-persistent if and only if limt!1wt = 0 along the BME on a set of sho
ksequen
es of positive measure. Our argument will show that the latter is ex
luded bythe equilibrium dynami
al system.Given w0 :=W(k0; "0) > 0, set b0 = B(w0). The dynami
s along the BME readkt+1 = KE(kt; "t) := K(W(kt; "t)) (11a)bt = BE(kt; "t) := B(W(kt; "t)): (11b)One observes that the equilibrium dynami
s are essentially governed by the 
apitaldynami
s (11a) while the equilibrium bubble in (11b) essentially mirrors the indu
edequilibrium wage pro
ess. Note that (11a) is stru
turally of the same type as the bubble-less 
ase studied in Wang (1993).3.2 Self-supporting setsWe are interested in 
hara
terizing the long-run statisti
al behavior of (11a) in a fashionsimilar to Wang (1993). The following result establishes that the 
apital dynami
s arebounded away from zero below and bounded above by the value kmax from Assumption3 under all sho
ks.Lemma 8Under the hypotheses of Theorem 1, the mappings KE(�; ") de�ned in (11a) satisfy thefollowing for ea
h " 2 E :(i) KE(kmax; ") < kmax(ii) KE(k; ") > k for k suÆ
iently small. 9



Proof: Let " 2 E be arbitrary but �xed. Claim (i) follows from KE < KE0 and Assump-tion 3 whi
h impliesKE(kmax; ") � KE(kmax; "max) < KE0 (kmax; "max) = kmax:To prove (ii), suppose �rst that wmin := limk!0W(k; ") > 0. Then,limk!0(KE(k; ")� k) = KB(wmin) > 0from whi
h the 
laim follows. Se
ond, suppose wmin = 0. From the Euler equations(4a,b) and (5), we 
on
lude that for ea
h k > 0 there exists "0 2 E su
h thatBE(KE(k; "); "0)BE(k; ") � R(k; "0):As limk!0R(k; "0) =1, we infer that for at least one "0 2 E , it holds thatlimk!0 BE(KE(k; "); "0)BE(k; ") =1:As shown in the previous se
tion, Æw < B(w) < w for all w 2 W . Thus,limk!0W(KE(k; "); "0)ÆW(k; ") = "0"Æ limk!0W(KE(k; "); ")W(k; ") � limk!0 BE(KE(k; "); "0)BE(k; ") =1from whi
h we 
on
lude that limk!0W(KE(k; "); ")W(k; ") =1:Thus, by stri
t monotoni
ity of W(�; "), KE(k; ") > k for k suÆ
iently small. �Using this result, let �kmin be the smallest �xed point of KE(�; "min) and �kmax be thelargest �xed point of KE(�; "max). Then, the interval �K := [�kmin; �kmax℄ is self-supportingfor the family (KE(�; "))"2E in the sense that k 2 �K implies KE(k; ") 2 �K for all " 2 E .Further, the set �K is attra
ting in the sense that for any k0 2 K , the pro
ess fktgt�0generated by (11a) 
onverges to �K . We formally state this insight asLemma 9The set �K = [�kmin; �kmax℄ � R++ is self-supporting for the family (KE(�; "))"2E.At this point, however, note that the set �K may not be ergodi
 for the dynami
s (11a).That is, there may exist proper subsets whi
h are self-supporting as well. The latterwould be ex
luded if the family (KE(�; "))"2E 
ould be shown to possess a stable �xed-point 
on�guration. In the latter 
ase, the results from Bro
k & Mirman (1972) 
an beapplied to show that the set �K is ergodi
 and supports a unique invariant probabilitydistribution, see also Wang (1993)). 10



3.3 Persisten
e of bubblesDe�ning �wmin := W(�kmin; "min) and �wmax := W(�kmax; "max), the wage pro
ess fwtgt�0de�ned by (11a) will asymptoti
ally 
onverge to the set �W := [ �wmin; �wmax℄. Likewise, by(11b) the bubble will asymptoti
ally 
onverge to the set �B := B( �W ) = [B( �wmin);B( �wmax)℄.Thus, the equilibrium dynami
al system (11a,b) 
onverges to a 
ompa
t set boundedaway from zero whi
h is self-supporting under all sequen
es of sho
ks. As a 
onse-quen
e, the bubble along the BME is persistent in the sense that it remains boundedaway from zero and will not 
onverge to zero asymptoti
ally. In the spe
ial 
ase wheresho
ks are degenerate, the deterministi
 �nding from Tirole (1985) is re
overed wherethe two-dimensional system (11a,b) is saddle-path stable and 
onverges to the uniquegolden-rule steady state.3.4 Stationary BMEIn sto
hasti
 models, the 
on
ept of an invariant probability distribution of the statevariables is widely applied to extend the notion of a �xed point in deterministi
 models.We will follow the literature by 
alling BME whi
h admit an invariant distribution aStationary BME (SBME). Sin
e all equilibrium variables are measurable fun
tions of thestate variables, it follows that all equilibrium variables possess an invariant distributionalong a SBME.To de�ne a SBME formally, let xt = (kt; "t), t � 0 denote the state variable andendow the state spa
e X =℄0; kmax℄ � E with the Borel-�-algebra B(X) to be
ome ameasurable spa
e. Then, the mapping KE : X �! R++ from (11a) and the time-invariant distribution � of the sho
k pro
ess gives rise to a transition probability P :X �B(X) �! [0; 1℄ whi
h governs the statisti
al evolution of the pro
ess fxtgt>0. The
onstru
tion of the transition probability is des
ribed in detail in Stokey & Lu
as (1994,pp.220). For x 2 X and B 2 B(X), the value P (x;B) is the probability that xt+1 2 Bgiven that xt = x. In the terminology used by DuÆe, Geanakoplos, Mas-Colell &M
Lennan (1994), P de�nes a time homogeneous Markov equilibrium (THME) on thestate spa
e X.Suppose that the initial state x0 is distributed a

ording to some probability measure �0on the measurable spa
e (X;B(X)). Then, P indu
es a sequen
e f�tgt�0 of probabilitymeasures on (X;B(X)) whi
h is de�ned re
ursively as�t(B) = ZXP (x;B)�t�1(dx); B 2 B(X): (12)We are now in a position to de�ne a SBME formally in the followingDe�nition 3A SBME is a probability measure � on the measurable spa
e (X;B(X)) that is invariantunder the transformation (12). 11



It is well-known that the existen
e of SBME is 
losely 
onne
ted to the existen
e of
ompa
t self-supporting sets, 
f. Bro
k & Mirman (1972), Wang (1993), or Stokey &Lu
as (1994). Based on their results and Lemma 9 whi
h implies that �X := �K � E is a
ompa
t self-supporting set of (11a), we have the followingTheorem 2Under the hypotheses of Theorem 1, there exists a SBME for the e
onomy E .4 Con
lusionsBubbly Markov equilibria provide a suitable 
on
ept to study asset bubbles in OLGmodels with sto
hasti
 produ
tion. Using a fun
tional equation approa
h where BMEobtain as �xed points of an operator, the present paper established suÆ
ient 
onditionsunder whi
h BME exist extending well-known results from deterministi
 models. Wealso showed that bubbles remain persistent along a non-trivial BME and give rise toan invariant probability distribution on the state spa
e. The latter were referred to aStationary BME.Several issues are on our resear
h agenda. First, we would like to study the welfaree�e
ts of asset bubbles and whether the inje
tion of a bubble is welfare improving. Inthis regard, we also seek to link our existen
e 
onditions to the ones derived in Demange& Laroque (2000). Se
ond, we seek to extend the present setup to in
lude more generalpreferen
es, produ
tion te
hnologies, and 
orrelated produ
tion sho
ks whi
h follow aMarkov pro
ess. Existing results from Morand & Re�ett (2007), M
Govern, Morand &Re�ett (2012), and Hillebrand (2012b) suggest that the basi
 approa
h in this paper isamendable to all these extensions.A Mathemati
al AppendixA.1 Proof of Lemma 1(i) Let  be given and w 2 W be arbitrary but �xed. For k 2 K and " 2 E , set
(k; ") :=  (W(k; ")) + kR(k; ") whi
h is a stri
tly in
reasing fun
tion of k due tomonotoni
ity of  and (T1). For k 2 K , de�ne the fun
tions~B(k) := E � � (W(k; �))v0�
(k; �)��E � �R(k; �)v0�
(k; �)�� (A.1)and S(k) := k + ~B(k) = E � �
(k; �)v0�
(k; �)��E � �R(k; �)v0�
(k; �)�� =: ~N(k)D(k) : (A.2)12



Sin
e  is 
ontinuous, so are the mappings ~B, ~N , D, and S. Observe that ~N in (A.2) isweakly in
reasing due to (U1) and monotoni
ity of 
(�; ") while D is stri
tly de
reasingwhi
h implies that S is stri
tly in
reasing. Furthermore, by the boundary 
onditionsimposed in Assumptions 1 and 2 limk!0D(k) =1 (A.3)whi
h, together with the monotoni
ity of ~N implies0 � limk!0 ~B(k) � limk!0S(k) = limk!0 ~N(k)D(k) = 0: (A.4)For k 2 K , de�ne G(k;w) := u0(w � S(k))�D(k): (A.5)Then, the desired solution ~k solves G(~k;w) = 0. Observe that G(�;w) is a stri
tlyin
reasing fun
tion whi
h follows from the monotoni
ity of S and D and u0. Thus, anyzero is ne
essarily unique. Also observe the boundary behavior limk!0G(k;w) = �1due to (A.3). By 
ontinuity, it suÆ
es to �nd a k < w su
h that G(k;w) � 0. Suppose � 0. Then the solution is ~k = k0 := K0(w) de�ned by (6) and ~b = 0. If  6= 0,
onsider the following two 
ases. First, S(k0) � w. Then, by (A.4) and monotoni
ityand 
ontinuity of S, there exists a unique value 0 < k̂ � k0 su
h that S(k̂) = w whi
himplies limk%k̂G(k;w) = 1. Se
ond, suppose S(k0) < w. Then, limk%k0 G(k;w) =u0(w � S(k0)) � D(k0) � G0(k0;w) = 0 with G0 de�ned by (6). Thus, in either 
ase,there exists a solution 0 < ~k � k0 < w. Setting ~b = ~B(~k) 
ompletes the proof. �A.2 Proof of Lemma 2Let  2 G be arbitrary. As shown in the previous proof, B = ~B ÆK with ~B de�nedin (A.1) and, for ea
h w 2 W , k = K (w) is the unique solution to G(k;w) = 0 with Gde�ned in (A.5). From (A.1), we infer dire
tly that B � 0,  > 0 implies B > 0 and = 0 implies B = 0. Furthermore, by (A.5) and the de�nition of K , for all w 2 Ww > S(K (w)) = K (w) + ~B (K (w)) > ~B (K (w)) = B (w):We show that w 7�! w�B (w) is (even stri
tly) in
reasing. For this purpose, let w 2 Wand � > 0 be arbitrary su
h that w+� 2 W . We show that B (w+�) < B (w) +�.By 
ontradi
tion, suppose B (w + �) � B (w) + �. Note that G de�ned in (A.5) isstri
tly de
reasing in w and stri
tly in
reasing in k by stri
t monotoni
ity of D and S.These properties imply that K is stri
tly in
reasing whi
h gives K (w +�) > K (w).Further, as shown in the previous proof, the fun
tion D de�ned in (A.2) is stri
tlyde
reasing whi
h gives D(K (w)) > D(K (w + �)). On the other hand, by (A.5) and13



our hypothesisD(K (w +�)) = u0(w +�� B (w +�)� K (w +�))� u0(w � B (w)� K (w +�))> u0(w � B (w)� K (w))= D(K (w))whi
h is a 
ontradi
tion and proves the 
laim.Next, we show that B is in
reasing. As B = ~B Æ K and we have already shown thatK is stri
tly in
reasing, it remains to show that ~B de�ned in (A.1) is in
reasing as well.To avoid trivialities, assume in the remainder that  > 0. Let k 2 K and � > 0 bearbitrary su
h that k +� 2 K . We have to show that ~B(k +�) > ~B(k). By (T1), themap a 7�! av0(a+ b), a > 0 is in
reasing for all b � 0. Using this in (A.1) and the fa
tthat both R(�; ") and v0 are stri
tly de
reasing gives~B(k +�) > V (�) := E � � (W(k; �))v0� (W(k; ") + (k +�)R(k +�; �))�E � �R(k; �)v0� (W(k; ") + (k +�)R(k +�; �))� :As V (0) = ~B(k), it suÆ
es to show that V is weakly in
reasing. Under the additionalhypothesis (U2) of 
onstant relative risk aversion, the following lemma holds.Lemma 10In addition to Assumption 2, let v satisfy (U2). Then, for any bounded random variablesX > 0 and Y > 0 de�ned on the probability spa
e (E ;B(E); �), the fun
tionH(a) := E � [Y v0(Y + aX)℄E � [Xv0(Y + aX)℄ ; a � 0is weakly in
reasing.Proof of Lemma 10De�ne ~X := Xjv00(Y + aX)j 12 and ~Y := Y jv00(Y + aX)j 12 . Under the hypotheses of thelemma, the fun
tion H is C1 and the derivative is positive, if and only ifE � [ ~X2℄ E � [Y v0(Y + aX)℄ � E � [ ~X ~Y ℄ E � [Xv0(Y + aX)℄: (A.6)Under (T2), v0(Y + aX) = �jv00(Y + aX)j(Y + aX) permitting (A.6) to be written as�E � � ~X2�� 12�E � �~Y 2�� 12 � E � �j ~X ~Y j�: (A.7)By H�older's inequality (see Aliprantis & Border (2007, p.463 setting p = q = 2 whi
himplies 1p + 1q = 1)), (A.7) is indeed satis�ed. �Employing Lemma 10 (setting Y :=  (W(k; �), X := R(k; �), and a = (k+�)g0(k+�)g0(k) {whi
h is in
reasing in � by (T1) { shows that V is weakly in
reasing whi
h proves~B(k +�) > V (�) � V (0) = ~B(k):Finally, adopting an argument used and proved in Morand & Re�ett (2003, p.1360),note that monotoni
ity of B and w 7�! w � B(w), w 2 W implies 
ontinuity of B. �14



A.3 Proof of Lemma 3Let  2 G be arbitrary. We only need to show that T ( ) = B is C1. First note that if is C1, so are the mappings ~B, S, D, and ~N de�ned in (A.1) and (A.2) and the mapG de�ned in (A.5). Re
all that for ea
h w 2 W , the mapping K determines the uniquezero of G(�;w). Sin
e G1(k; w) > 0, the map K is C1 by the impli
it fun
tion theorem.Thus, the 
omposition B = ~B Æ K is C1 as well. �A.4 Proof of Lemma 4We only prove the stri
t inequalities, as the proof of the weak inequalities is analogous.Let  1 >  0 be arbitrary but �xed. For � 2 [0; 1℄, de�ne  � := � 1 + (1 � �) 0.Sin
e G 0 is 
onvex,  � 2 G 0 for all �. Moreover, the map � 7�!  � =  0 + �� where� :=  1 �  0 > 0 is stri
tly in
reasing.Let w 2 W be arbitrary but �xed. By Lemma 1 (and a slight abuse of notation),for ea
h � 2 [0; 1℄ there exists a unique pair (k�; b�) whi
h solves H1(k�; b�;w; �) =H1(k�; b�;w; �) = 0. We will show that the map � 7�! b�, � 2 [0; 1℄ is stri
tly in
reasingand � 7�! k�, � 2 [0; 1℄ is stri
tly de
reasing whi
h implies b1 > b0 and k1 < k0. Theproof employs the same stru
ture as the one of Lemma 1. Write 
�(k; ") :=  �(W(k; "))+kR(k; "). First, the pair (k�; b�) satis�es b� = ~B(k�; �) where~B(k; �) := E � � �(W(k; �))v0�
�(k; �)��E � �R(k; �)v0�
�(k; �)�� =: N(k; �)D(k; �) ; k 2 K ; � 2 [0; 1℄: (A.8)For later referen
e, we 
ompute the partial derivatives of D and N . In this regard,note from (1a,b) that Wk(k; ") = �kRk(k; ") > 0 whi
h implies 
k(k; ") = R(k; ") +kRk(k; ")(1 �  0(W(k; "))) for k > 0 and " 2 E . Taking the derivative of (A.8) oneobtains, exploiting (U1) and omitting some arguments for notational 
learness�kN(k; �) = E � ��kRk(k; �) 0�(�)�v0(�) +  �(�)v00(�)�+  �(�)R(k; �)v00(�)�> �E � � �(�)R(k; �)jv00(�)j� > 0 (A.9)�kD(k; �) = E � �Rk(k; �)�v0(�) + kR(k; �)v00(�)(1�  0�(�))�+R(k; �)2v00(�)�< �E � �R(k; �)2jv00(�)j� < 0 (A.10)��N(k; �) = E � ��(k; �)�v0(�)�  �(W(k; �))jv00(�)j��� kE � ��(k; �)R(k; �)jv00���j� > 0 (A.11)��D(k; �) = �E � ��(k; �)R(k; �)jv00(�)j� < 0 (A.12)where �(k; ") :=  1(W(k; "))�  0(W(k; ")) > 0.We show that dk�d� < 0. As k� is the unique solution to G(k;�) := u0(w� k� ~B(k; �))�D(k; �) = 0, the derivative 
omputesdk�d� = �G�(k;�)Gk(k;�) ���k=k�= � ju00(�)j�� ~B(k�;�)� ��D(k�; �)ju00(�)j(1 + �k ~B(k�;�))� �kD(k�; �) : (A.13)15



Using (A.11) and (A.12), the partial derivative of (A.8) with respe
t to � satis�es�� ~B(k;�) = ��N(k; �)D(k; �)� ��D(k; �)N(k; �)D(k; �)2 > 0: (A.14)Also re
all that �kD(k; �) < 0 by (A.10). Using these results and (A.12) in (A.13)together with �k ~B(k;�) � 0 whi
h follows from the monotoni
ity of ~B established inthe proof of Lemma 2, the 
laim follows.Finally, we show that db�d� > 0. As b� = ~B(k�; �) one obtainsdb�d� = �k ~B(k�; �)dk�d� + �� ~B(k�; �)whi
h, using (A.13) 
an be rearranged todb�d� = ju00(�)j�� ~B(k�;�) +M(k�;�)ju00(�)j(1 + �k ~B(k�;�))� �kD(k�; �)where M(k;�) := �k ~B(k;�)��D(k;�) � �� ~B(k;�)�kD(k;�). As the denominator andthe �rst term in the numerator are stri
tly positive, it suÆ
es to show thatM(k�;�) � 0.Using (A.14) and that�k ~B(k;�) = �kN(k; �)D(k; �)� �kD(k; �)N(k; �)D(k; �)2 (A.15)straightforward 
omputations yield thatM(k;�) = ��D(k; �)�kN(k; �)� �kD(k; �)��N(k; �)D(k; �)From (A.11) and (A.12), observe that ��N(k; �) � �k��N(k; �). It therefore suÆ
es toshow that �kN(k; �)+ k�kD(k; �) � 0. Using (A.9) and (A.10) yields the desired result�kN(k; �) + k�kD(k; �) < E � �kRk(k; �)v0(�)(1�  0�(�))� < 0: �A.5 Proof of Lemma 5For all Æ 2℄0; 1℄,  Æ 2 G 0. Using the stru
ture from the proof of Lemma 1, (T Æ)(w) =~B(KÆ(w)) for all w 2 W where ~B is de�ned in (A.1) and KÆ(w) := K Æ(w) is the uniquesolution toG(k; Æ; w) := u0�w � k � ~B(k)�� E � �R(k; �)v0�ÆW(k; �) + kR(k; �)�� = 0: (A.16)16



Using (1a) and (1b), the map ~B 
an be written as~B(k) = ÆW(k; "max)R(k; "max) :Rearranging terms, it follows that T Æ(w) �  Æ(w) if and only ifW(KÆ(w); "max)w �R(KÆ(w); "max) > 0: (A.17)We seek to establish existen
e of a Æ 2℄0; 1[ su
h that (A.17) holds for all w 2 W . As KÆis well-de�ned for all Æ 2 [0; 1℄ and depends 
ontinuously on Æ, it suÆ
es to show thatthe l.h.s in (A.17) is bounded away from zero for Æ = 0. Thus, we will show that thereexists 
 > 0 su
h thatH(w) := W(K0(w); "max)w �R(K0(w); "max) � 
 (A.18)for all w 2 W . Here for ea
h w 2 W , K0(w) is determined by the impli
it 
ondition (6).De�ne kmax > 0 as in Assumption 3 and set wmax := W(kmax; "max). By stability anduniqueness of kmax, the map w 7�! W(K0(w); "max) has wmax as its unique �xed pointwhi
h is stable implying W(K0(w); "max) > w for all w 2℄0; wmax[.1 Using Assumption4 and kmax = K0(wmax) givesH(wmax) = 1�R(kmax; "max) > 0:Furthermore, letting wmin > 0 be the unique solution to R(K0(w); "max) = 1, it followsthat H(w) > 0 for all w 2 [wmin; wmax℄. Thus, de�ning
 := minnH(w)jw 2 [wmin; wmax℄o > 0the 
laim in (A.18) will follow if we show that H is stri
tly de
reasing on ℄0; wmin[.Let w 2℄0; wmin[ be arbitrary but �xed and set k := K0(w). The derivative of H 
an bewritten asH 0(w) = �kR(k; "max)w2 �W(k; "max)kR(k; "max) � Eg0(k)K00(w)wk k + wk � : (A.19)As k = K0(w) solves G(k; 0; w) = 0 with G de�ned in (A.16), the derivative satis�esK00(w) = ju00(w � k)jju00(w � k)j+ jg00(k)jg0(k) u0(w � k) + (1� Eg0(k))E � [R(k; �)2jv00(�)j℄ :1To see this, note that for all w 2 W there exists a unique k 2 K su
h that w = W(k; "max).Assumption 3 and (7) yield k � KE0 (k; "max) = K0(w) whi
h, by stri
t monotoni
ity ofW(�; "max) givesw =W(k; "max) � W(K0(w); "max) where the last inequality is stri
t if and only if the �rst one is stri
t.17



Using E � [R(k; �)2jv00(�)j℄ = � u0(w�k)k by (U2) and (6) and u0(w�k)ju00(w�k)j = w�k� � w � k by(U1){(U3), it follows thatK00(w) = 11 + Eg0(k)w�kk� + (1� Eg0(k))w�kk� 11 + Eg0(k)w�kk + (1� Eg0(k))w�kk = kw: (A.20)Using this result and (T2), the bra
keted term in (A.19) 
an be rearranged asW(k; "max)kR(k; "max) � Eg0(k)K00(w)wk k + wk (1a;b)= 1� Eg(k)Eg(k) � Eg0(k)K00(w)wk k + wk(A:20)� 1� Eg(k)Eg(k) � Eg0(k)k + wk(T2)� (1� Eg(k)) � 1Eg(k) � k + wk �= (1� Eg(k)) �1� Eg(k)Eg(k) � wk � : (A.21)The 
laim will follow if we show that the bra
keted term in (A.21) is positive. Now, asargued in Remark ??, (U2) and (U3) imply that v0(
) = 
u0(
) = 

�� where � � 1 by(U1). The following auxiliary result shows that Assumption 4 implies further restri
tionson these parameters.Lemma 11Let 
̂ := 
E � [(idE(�)="max)1��℄. Under (U1){(U3), Assumption 4 implies thatW(kmax; "max)kmaxR(kmax; "max) > 1 + 
̂ 1�
̂ 1� :Proof of Lemma 11.Set Rmax := R(kmax; "max) and, as before wmax =W(kmax; "max). Then, kmax = K0(wmax)whi
h, by (6) resp. (A.16), is equivalent to G(kmax; 0; wmax) = 0 and 
an be written as(wmax � kmax)�� = 
E � hR(kmax; �)�kmaxR(kmax; �)���i = 
̂Rmax(kmaxRmax)��:Exploiting Rmax < 1, this 
an be rewritten to satisfy the following inequalities:kmaxRmax = 
̂ 1�R 1�max(wmax � kmax) < 
̂ 1� (wmax � kmax) < 
̂ 1� (wmax � Rmaxkmax):Rearranging and using wmax =W(kmax; "max) and kmax = K0(wmax) gives the 
laim. �Re
all that (T2) is equivalent to the map k 7! Eg(k) being weakly in
reasing. Combinedwith Lemma 11 and (1a,b), k < kmax implies1� Eg(k)Eg(k) (1a;b)= W(k; "max)kR(k; "max) (T3)� W(kmax; "max)kmaxR(kmax; "max) > 1 + 
̂ 1�
̂ 1� :18



Thus, positivity of the bra
keted term in (A.21) will follow if we show that1 + 
̂ 1�
̂ 1� � wk : (A.22)Using R(k; "max) > 1 and exploiting (U1){(U3), it follows from G(k; 0; w) = 0 that(w � k)�� = 
E � hR(k; �)�kR(k; �)���i = 
̂R(k; "max)1��k�� � 
̂k��where 
̂ is de�ned as in Lemma 11. Rearranging shows that (A.22) is indeed satis�ed.Thus, the bra
keted term in (A.21) is positive implying H 0(w) < 0 for all w 2℄0; wmin[.This proves (A.18) and the 
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